On the Convergence to the Non-equilibrium Steady State of a Langevin Dynamics with Widely Separated Time Scales and Different Temperatures

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Diego Alberici, Nicolas Macris, Emanuele Mingione
{"title":"On the Convergence to the Non-equilibrium Steady State of a Langevin Dynamics with Widely Separated Time Scales and Different Temperatures","authors":"Diego Alberici,&nbsp;Nicolas Macris,&nbsp;Emanuele Mingione","doi":"10.1007/s00023-023-01392-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study the solution of the two-temperature Fokker–Planck equation and rigorously analyse its convergence towards an explicit non-equilibrium stationary measure for long time and two widely separated time scales. The exponential rates of convergence are estimated assuming the validity of logarithmic Sobolev inequalities for the conditional and marginal distributions of the limit measure. We show that these estimates are sharp in the exactly solvable case of a quadratic potential. We discuss a few examples where the logarithmic Sobolev inequalities are satisfied through simple, though not optimal, criteria. In particular, we consider a spin glass model with slowly varying external magnetic fields whose non-equilibrium measure corresponds to Guerra’s hierarchical construction appearing in Talagrand’s proof of the Parisi formula.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 7","pages":"3405 - 3466"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01392-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the solution of the two-temperature Fokker–Planck equation and rigorously analyse its convergence towards an explicit non-equilibrium stationary measure for long time and two widely separated time scales. The exponential rates of convergence are estimated assuming the validity of logarithmic Sobolev inequalities for the conditional and marginal distributions of the limit measure. We show that these estimates are sharp in the exactly solvable case of a quadratic potential. We discuss a few examples where the logarithmic Sobolev inequalities are satisfied through simple, though not optimal, criteria. In particular, we consider a spin glass model with slowly varying external magnetic fields whose non-equilibrium measure corresponds to Guerra’s hierarchical construction appearing in Talagrand’s proof of the Parisi formula.

论时间尺度相距甚远且温度不同的朗格文动力学非平衡稳态的收敛性
我们研究了双温福克-普朗克方程的解法,并严格分析了其在长时间和两个相距甚远的时间尺度上向一个明确的非平衡静态量的收敛性。假定极限量的条件分布和边际分布的对数索博列夫不等式有效,对指数收敛率进行了估计。我们证明,在二次势的精确可解情况下,这些估计值是尖锐的。我们讨论了几个例子,在这些例子中,对数索波列夫不等式通过简单的(尽管不是最优的)标准得到了满足。特别是,我们考虑了一个具有缓慢变化的外部磁场的自旋玻璃模型,它的非平衡度量与塔拉格朗的帕里西公式证明中出现的格拉分层结构相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信