Hall classes of groups

{"title":"Hall classes of groups","authors":"","doi":"10.1007/s13398-023-01549-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In 1958, Philip Hall (Ill J Math 2:787–801, 1958) proved that if a group <em>G</em> has a nilpotent normal subgroup <em>N</em> such that <span> <span>\\(G/N'\\)</span> </span> is nilpotent, then <em>G</em> is nilpotent. The scope of Hall’s nilpotency criterion is not restricted to group theory, and in fact similar statements hold for Lie algebras and more generally for algebraically coherent semiabelian categories (see Chao in Math Z 103:40–42, 1968; Gray in Adv Math 349:911–919, 2019; Stitzinger in Ill J Math 22:499–505, 1978). We say that a group class <span> <span>\\({\\mathfrak {X}}\\)</span> </span> is a <em>Hall class</em> if it contains every group <em>G</em> admitting a nilpotent normal subgroup <em>N</em> such that <span> <span>\\(G/N'\\)</span> </span> belongs to <span> <span>\\({\\mathfrak {X}}\\)</span> </span>. Thus, Hall’s nilpotency criterion just asserts that nilpotent groups form a Hall class. Many other relevant classes of groups have been proved to be Hall classes; for example, Plotkin (Sov Math Dokl 2:471–474, 1961) and Robinson (Math Z 107:225–231, 1968) proved that locally nilpotent groups and hypercentral groups form Hall classes. Note that these generalizations also hold if groups are replaced by other algebraic structures, for example Lie algebras (see Stitzinger in Ill J Math 22:499–505, 1978). The aim of this paper is to develop a general theory of Hall classes of groups, that could later be reasonably extended to Lie algebras. Among other results, we prove that many natural types of generalized nilpotent groups form Hall classes, and we give examples showing in particular that the class of groups having a finite term in the lower central series is not a Hall class, even if we restrict to the universe of linear groups.</p>","PeriodicalId":21293,"journal":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13398-023-01549-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1958, Philip Hall (Ill J Math 2:787–801, 1958) proved that if a group G has a nilpotent normal subgroup N such that \(G/N'\) is nilpotent, then G is nilpotent. The scope of Hall’s nilpotency criterion is not restricted to group theory, and in fact similar statements hold for Lie algebras and more generally for algebraically coherent semiabelian categories (see Chao in Math Z 103:40–42, 1968; Gray in Adv Math 349:911–919, 2019; Stitzinger in Ill J Math 22:499–505, 1978). We say that a group class \({\mathfrak {X}}\) is a Hall class if it contains every group G admitting a nilpotent normal subgroup N such that \(G/N'\) belongs to  \({\mathfrak {X}}\) . Thus, Hall’s nilpotency criterion just asserts that nilpotent groups form a Hall class. Many other relevant classes of groups have been proved to be Hall classes; for example, Plotkin (Sov Math Dokl 2:471–474, 1961) and Robinson (Math Z 107:225–231, 1968) proved that locally nilpotent groups and hypercentral groups form Hall classes. Note that these generalizations also hold if groups are replaced by other algebraic structures, for example Lie algebras (see Stitzinger in Ill J Math 22:499–505, 1978). The aim of this paper is to develop a general theory of Hall classes of groups, that could later be reasonably extended to Lie algebras. Among other results, we prove that many natural types of generalized nilpotent groups form Hall classes, and we give examples showing in particular that the class of groups having a finite term in the lower central series is not a Hall class, even if we restrict to the universe of linear groups.

厅级组
摘要 1958年,菲利普-霍尔(Ill J Math 2:787-801,1958)证明,如果一个群G有一个零能正常子群N,使得(G/N'\)是零能的,那么G就是零能的。霍尔零势判据的范围并不局限于群论,事实上,类似的说法也适用于李代数和更一般的代数相干半阿贝尔范畴(见Chao在《数学Z》103:40-42,1968;Gray在《Adv Math》349:911-919,2019;Stitzinger在《Ill J Math》22:499-505,1978)。我们说一个群类 \({\mathfrak {X}}\)是一个霍尔类,如果它包含了每一个容许一个零能正子群 N 的群 G,使得 \(G/N'\)属于 \({\mathfrak {X}}\)。因此,霍尔的零能性判据只是断言零能群构成了霍尔类。许多其他相关的群类也被证明是霍尔类;例如,普洛特金(Sov Math Dokl 2:471-474, 1961)和罗宾逊(Math Z 107:225-231, 1968)证明了局部零能群和超中心群构成霍尔类。请注意,如果把群换成其他代数结构,例如李代数,这些概括也是成立的(见 Stitzinger 在 Ill J Math 22:499-505, 1978)。本文的目的是发展一种关于群的霍尔类的一般理论,这种理论以后可以合理地扩展到李代数。在其他结果中,我们证明了许多自然类型的广义零能群构成霍尔类,并举例说明,即使我们把范围局限于线性群,在下中心数列中具有有限项的群类也不是霍尔类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信