{"title":"Ordered probit Bayesian additive regression trees for ordinal data","authors":"Jaeyong Lee, Beom Seuk Hwang","doi":"10.1002/sta4.643","DOIUrl":null,"url":null,"abstract":"Bayesian additive regression trees (BART) is a nonparametric model that is known for its flexibility and strong statistical foundation. To address a robust and flexible approach to analyse ordinal data, we extend BART into an ordered probit regression framework (OPBART). Further, we propose a semiparametric setting for OPBART (semi-OPBART) to model covariates of interest parametrically and confounding variables nonparametrically. We also provide Gibbs sampling procedures to implement the proposed models. In both simulations and real data studies, the proposed models demonstrate superior performance over other competing ordinal models. We also highlight enhanced interpretability of semi-OPBART in terms of inference through marginal effects.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.643","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian additive regression trees (BART) is a nonparametric model that is known for its flexibility and strong statistical foundation. To address a robust and flexible approach to analyse ordinal data, we extend BART into an ordered probit regression framework (OPBART). Further, we propose a semiparametric setting for OPBART (semi-OPBART) to model covariates of interest parametrically and confounding variables nonparametrically. We also provide Gibbs sampling procedures to implement the proposed models. In both simulations and real data studies, the proposed models demonstrate superior performance over other competing ordinal models. We also highlight enhanced interpretability of semi-OPBART in terms of inference through marginal effects.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.