Basic Convex Analysis in Metric Spaces with Bounded Curvature

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Adrian S. Lewis, Genaro López-Acedo, Adriana Nicolae
{"title":"Basic Convex Analysis in Metric Spaces with Bounded Curvature","authors":"Adrian S. Lewis, Genaro López-Acedo, Adriana Nicolae","doi":"10.1137/23m1551389","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 366-388, March 2024. <br/> Abstract. Differentiable structure ensures that many of the basics of classical convex analysis extend naturally from Euclidean space to Riemannian manifolds. Without such structure, however, extensions are more challenging. Nonetheless, in Alexandrov spaces with curvature bounded above (but possibly positive), we develop several basic building blocks. We define subgradients via projection and the normal cone, prove their existence, and relate them to the classical affine minorant property. Then, in what amounts to a simple calculus or duality result, we develop a necessary optimality condition for minimizing the sum of two convex functions.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1551389","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 1, Page 366-388, March 2024.
Abstract. Differentiable structure ensures that many of the basics of classical convex analysis extend naturally from Euclidean space to Riemannian manifolds. Without such structure, however, extensions are more challenging. Nonetheless, in Alexandrov spaces with curvature bounded above (but possibly positive), we develop several basic building blocks. We define subgradients via projection and the normal cone, prove their existence, and relate them to the classical affine minorant property. Then, in what amounts to a simple calculus or duality result, we develop a necessary optimality condition for minimizing the sum of two convex functions.
有界曲率公元空间中的基本凸分析
SIAM 优化期刊》,第 34 卷,第 1 期,第 366-388 页,2024 年 3 月。 摘要可微分结构确保经典凸分析的许多基本原理从欧几里得空间自然扩展到黎曼流形。然而,如果没有这样的结构,扩展就更具挑战性。尽管如此,在曲率有上界(但可能是正)的亚历山德罗夫空间中,我们开发了几个基本的构建模块。我们通过投影和法锥定义了子梯度,证明了它们的存在,并将它们与经典仿射微分性质联系起来。然后,在相当于一个简单的微积分或对偶性结果中,我们提出了最小化两个凸函数之和的必要最优条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信