{"title":"Bootstrap consistency for the Mack bootstrap","authors":"Julia Steinmetz, Carsten Jentsch","doi":"10.1016/j.insmatheco.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Mack's distribution-free chain ladder reserving model belongs to the most popular approaches in non-life insurance mathematics. Proposed to determine the first two moments of the reserve, it does not allow to identify the whole distribution of the reserve. For this purpose, Mack's model is usually equipped with a tailor-made bootstrap procedure. Although widely used in practice to estimate the reserve risk, no theoretical bootstrap consistency results exist that justify this approach.</p><p>To fill this gap in the literature, we adopt the framework proposed by <span>Steinmetz and Jentsch (2022)</span> to derive asymptotic theory in Mack's model. By splitting the reserve into two parts corresponding to process and estimation uncertainty, this enables - for the first time - a rigorous investigation also of the validity of the Mack bootstrap. We prove that the (conditional) distribution of the asymptotically dominating process uncertainty part is correctly mimicked by Mack's bootstrap if the parametric family of distributions of the individual development factors is correctly specified. Otherwise, this is not the case. In contrast, the (conditional) distribution of the estimation uncertainty part is generally not correctly captured by Mack's bootstrap. To tackle this, we propose an alternative Mack-type bootstrap, which is designed to capture also the distribution of the estimation uncertainty part.</p><p>We illustrate our findings by simulations and show that the newly proposed alternative Mack bootstrap performs superior to the Mack bootstrap.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"115 ","pages":"Pages 83-121"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167668724000015/pdfft?md5=e2632068fb5d1d788be9187b10f3152b&pid=1-s2.0-S0167668724000015-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000015","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Mack's distribution-free chain ladder reserving model belongs to the most popular approaches in non-life insurance mathematics. Proposed to determine the first two moments of the reserve, it does not allow to identify the whole distribution of the reserve. For this purpose, Mack's model is usually equipped with a tailor-made bootstrap procedure. Although widely used in practice to estimate the reserve risk, no theoretical bootstrap consistency results exist that justify this approach.
To fill this gap in the literature, we adopt the framework proposed by Steinmetz and Jentsch (2022) to derive asymptotic theory in Mack's model. By splitting the reserve into two parts corresponding to process and estimation uncertainty, this enables - for the first time - a rigorous investigation also of the validity of the Mack bootstrap. We prove that the (conditional) distribution of the asymptotically dominating process uncertainty part is correctly mimicked by Mack's bootstrap if the parametric family of distributions of the individual development factors is correctly specified. Otherwise, this is not the case. In contrast, the (conditional) distribution of the estimation uncertainty part is generally not correctly captured by Mack's bootstrap. To tackle this, we propose an alternative Mack-type bootstrap, which is designed to capture also the distribution of the estimation uncertainty part.
We illustrate our findings by simulations and show that the newly proposed alternative Mack bootstrap performs superior to the Mack bootstrap.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.