Design consideration on integration of mechanical intravascular ultrasound and electromagnetic tracking sensor for intravascular reconstruction.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Wenran Cai, Kazuaki Hara, Naoki Tomii, Etsuko Kobayashi, Takashi Ohya, Ichiro Sakuma
{"title":"Design consideration on integration of mechanical intravascular ultrasound and electromagnetic tracking sensor for intravascular reconstruction.","authors":"Wenran Cai, Kazuaki Hara, Naoki Tomii, Etsuko Kobayashi, Takashi Ohya, Ichiro Sakuma","doi":"10.1007/s11548-024-03059-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Considering vessel deformation, endovascular navigation requires intraoperative geometric information. Mechanical intravascular ultrasound (IVUS) with an electromagnetic (EM) sensor can be used to reconstruct blood vessels with thin diameter. However, the integration design should be evaluated based on the factors affecting the reconstruction error.</p><p><strong>Methods: </strong>The interference between the mechanical IVUS and EM sensor was measured in different relative positions. Two designs of the integrated catheter were evaluated by measuring the reconstruction errors using a rigid vascular phantom.</p><p><strong>Results: </strong>When the distance from the EM sensor to the field generator was 75 mm, the interference from mechanical IVUS to an EM sensor was negligible, with position and rotation errors less than 0.1 mm and 0.6°, respectively. The reconstructed vessel model for proximal IVUS transducer had a smooth surface but an inaccurate shape at large curvature of the vascular phantom. When the distance to the field generator was 175 mm, the error increased significantly.</p><p><strong>Conclusion: </strong>Placing the IVUS transducer on the proximal side of the EM sensor is superior in terms of interference reduction but inferior in terms of mechanical stability compared to a distal transducer. The distal side is preferred due to better mechanical stability during catheter manipulation at larger curvature. With this configuration, surface reconstruction errors less than 1.7 mm (with RMS 0.57 mm) were achieved when the distance to the field generator was less than 175 mm.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"1545-1554"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03059-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Considering vessel deformation, endovascular navigation requires intraoperative geometric information. Mechanical intravascular ultrasound (IVUS) with an electromagnetic (EM) sensor can be used to reconstruct blood vessels with thin diameter. However, the integration design should be evaluated based on the factors affecting the reconstruction error.

Methods: The interference between the mechanical IVUS and EM sensor was measured in different relative positions. Two designs of the integrated catheter were evaluated by measuring the reconstruction errors using a rigid vascular phantom.

Results: When the distance from the EM sensor to the field generator was 75 mm, the interference from mechanical IVUS to an EM sensor was negligible, with position and rotation errors less than 0.1 mm and 0.6°, respectively. The reconstructed vessel model for proximal IVUS transducer had a smooth surface but an inaccurate shape at large curvature of the vascular phantom. When the distance to the field generator was 175 mm, the error increased significantly.

Conclusion: Placing the IVUS transducer on the proximal side of the EM sensor is superior in terms of interference reduction but inferior in terms of mechanical stability compared to a distal transducer. The distal side is preferred due to better mechanical stability during catheter manipulation at larger curvature. With this configuration, surface reconstruction errors less than 1.7 mm (with RMS 0.57 mm) were achieved when the distance to the field generator was less than 175 mm.

Abstract Image

整合血管内机械超声和电磁跟踪传感器用于血管内重建的设计考虑。
目的:考虑到血管变形,血管内导航需要术中几何信息。带有电磁(EM)传感器的机械血管内超声(IVUS)可用于重建直径较细的血管。然而,应根据影响重建误差的因素评估集成设计:方法:在不同的相对位置测量了机械 IVUS 和电磁传感器之间的干扰。方法:在不同的相对位置测量机械式 IVUS 和电磁传感器之间的干扰,使用刚性血管模型测量重建误差,评估两种集成导管的设计:当电磁传感器到场发生器的距离为 75 毫米时,机械 IVUS 对电磁传感器的干扰可忽略不计,位置误差和旋转误差分别小于 0.1 毫米和 0.6°。近端 IVUS 传感器重建的血管模型表面光滑,但在血管模型曲率较大时形状不准确。当距离场发生器 175 毫米时,误差明显增大:结论:与远端换能器相比,将 IVUS 换能器放置在电磁传感器的近端可减少干扰,但机械稳定性较差。在较大曲率下操作导管时,远侧的机械稳定性更好,因此更受青睐。在这种配置下,当与场强发生器的距离小于 175 毫米时,表面重建误差小于 1.7 毫米(均方根误差为 0.57 毫米)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信