Alexey Pyrkov, Alex Aliper, Dmitry Bezrukov, Dmitriy Podolskiy, Feng Ren, Alex Zhavoronkov
{"title":"Complexity of life sciences in quantum and AI era","authors":"Alexey Pyrkov, Alex Aliper, Dmitry Bezrukov, Dmitriy Podolskiy, Feng Ren, Alex Zhavoronkov","doi":"10.1002/wcms.1701","DOIUrl":null,"url":null,"abstract":"<p>Having made significant advancements in understanding living organisms at various levels such as genes, cells, molecules, tissues, and pathways, the field of life sciences is now shifting towards integrating these components into the bigger picture to understand their collective behavior. Such a shift of perspective requires a general conceptual framework for understanding complexity in life sciences which is currently elusive, a transition being facilitated by large-scale data collection, unprecedented computational power, and new analytical tools. In recent years, life sciences have been revolutionized with AI methods, and quantum computing is touted to be the next most significant leap in technology. Here, we provide a theoretical framework to orient researchers around key concepts of how quantum computing can be integrated into the study of the hierarchical complexity of living organisms and discuss recent advances in quantum computing for life sciences.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1701","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1701","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Having made significant advancements in understanding living organisms at various levels such as genes, cells, molecules, tissues, and pathways, the field of life sciences is now shifting towards integrating these components into the bigger picture to understand their collective behavior. Such a shift of perspective requires a general conceptual framework for understanding complexity in life sciences which is currently elusive, a transition being facilitated by large-scale data collection, unprecedented computational power, and new analytical tools. In recent years, life sciences have been revolutionized with AI methods, and quantum computing is touted to be the next most significant leap in technology. Here, we provide a theoretical framework to orient researchers around key concepts of how quantum computing can be integrated into the study of the hierarchical complexity of living organisms and discuss recent advances in quantum computing for life sciences.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.