Energy decay analysis for Porous elastic system with thermoelasticity of type III: A second spectrum approach

IF 1.4 Q2 MATHEMATICS, APPLIED
Hamza Zougheib, Toufic El Arwadi
{"title":"Energy decay analysis for Porous elastic system with thermoelasticity of type III: A second spectrum approach","authors":"Hamza Zougheib,&nbsp;Toufic El Arwadi","doi":"10.1016/j.rinam.2024.100435","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous studies have been conducted to investigate porous systems under different damping effects. Recent research has consistently achieved the expected exponential decay of energy solutions when employing stabilization techniques that involve non-physical assumptions of equal wave velocities. In this study, we examine a one-dimensional thermoelastic porous system within the framework of the second frequency spectrum. Remarkably, we demonstrate that exponential decay can be achieved without relying on the assumption of equal wave speeds. We consider the porous system, and we incorporated thermoelastic damping based on the Green–Naghdi law of heat conduction into our study. To begin with, we use the Faedo–Galerkin approximation method to validate the global well-posedness of the system. By utilizing a Lyapunov functional, we establish exponential stability without relying on the assumption of equal wave speed. We then introduce and analyze a numerical scheme. Finally, by assuming additional regularity of the solution, we derive a priori error estimates.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100435"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000050/pdfft?md5=772b43ad1ba55d0786cdecb6121cbee3&pid=1-s2.0-S2590037424000050-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous studies have been conducted to investigate porous systems under different damping effects. Recent research has consistently achieved the expected exponential decay of energy solutions when employing stabilization techniques that involve non-physical assumptions of equal wave velocities. In this study, we examine a one-dimensional thermoelastic porous system within the framework of the second frequency spectrum. Remarkably, we demonstrate that exponential decay can be achieved without relying on the assumption of equal wave speeds. We consider the porous system, and we incorporated thermoelastic damping based on the Green–Naghdi law of heat conduction into our study. To begin with, we use the Faedo–Galerkin approximation method to validate the global well-posedness of the system. By utilizing a Lyapunov functional, we establish exponential stability without relying on the assumption of equal wave speed. We then introduce and analyze a numerical scheme. Finally, by assuming additional regularity of the solution, we derive a priori error estimates.

具有 III 型热弹性的多孔弹性系统的能量衰减分析:第二谱方法
针对不同阻尼效应下的多孔系统进行了大量研究。最近的研究表明,当采用涉及等波速非物理假设的稳定技术时,能量解的指数衰减一直达到预期效果。在本研究中,我们在第二频谱框架内研究了一维热弹性多孔系统。值得注意的是,我们证明了指数衰减可以在不依赖于等波速假设的情况下实现。我们考虑了多孔系统,并将基于格林-纳格迪热传导定律的热弹性阻尼纳入了我们的研究。首先,我们使用 Faedo-Galerkin 近似方法验证了系统的全局拟合性。通过利用 Lyapunov 函数,我们在不依赖于等波速假设的情况下建立了指数稳定性。然后,我们介绍并分析了一种数值方案。最后,通过假设解的额外正则性,我们得出了先验误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信