{"title":"From digital health to learning health systems: four approaches to using data for digital health design.","authors":"Valeria Pannunzio, Maaike Kleinsmann, Dirk Snelders, Jeroen Raijmakers","doi":"10.1080/20476965.2023.2284712","DOIUrl":null,"url":null,"abstract":"<p><p>Digital health technologies, powered by digital data, provide an opportunity to improve the efficacy and efficiency of health systems at large. However, little is known about different approaches to the use of data for digital health design, or about their possible relations to system-level dynamics. In this contribution, we identify four existing approaches to the use of data for digital health design, namely the silent, the overt, the data-enabled, and the convergent. After characterising the approaches, we provide real-life examples of each. Furthermore, we compare the approaches in terms of selected desirable characteristics of the design process, highlighting relative advantages and disadvantages. Finally, we reflect on the system-level relevance of the differentiation between the approaches and point towards future research directions. Overall, the contribution provides researchers and practitioners with a broad conceptual framework to examine data-related challenges and opportunities in digital health design.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2023.2284712","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Digital health technologies, powered by digital data, provide an opportunity to improve the efficacy and efficiency of health systems at large. However, little is known about different approaches to the use of data for digital health design, or about their possible relations to system-level dynamics. In this contribution, we identify four existing approaches to the use of data for digital health design, namely the silent, the overt, the data-enabled, and the convergent. After characterising the approaches, we provide real-life examples of each. Furthermore, we compare the approaches in terms of selected desirable characteristics of the design process, highlighting relative advantages and disadvantages. Finally, we reflect on the system-level relevance of the differentiation between the approaches and point towards future research directions. Overall, the contribution provides researchers and practitioners with a broad conceptual framework to examine data-related challenges and opportunities in digital health design.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.