{"title":"Bayesian LASSO for population stratification correction in rare haplotype association studies.","authors":"Zilu Liu, Asuman Seda Turkmen, Shili Lin","doi":"10.1515/sagmb-2022-0034","DOIUrl":null,"url":null,"abstract":"<p><p>Population stratification (PS) is one major source of confounding in both single nucleotide polymorphism (SNP) and haplotype association studies. To address PS, principal component regression (PCR) and linear mixed model (LMM) are the current standards for SNP associations, which are also commonly borrowed for haplotype studies. However, the underfitting and overfitting problems introduced by PCR and LMM, respectively, have yet to be addressed. Furthermore, there have been only a few theoretical approaches proposed to address PS specifically for haplotypes. In this paper, we propose a new method under the Bayesian LASSO framework, QBLstrat, to account for PS in identifying rare and common haplotypes associated with a continuous trait of interest. QBLstrat utilizes a large number of principal components (PCs) with appropriate priors to sufficiently correct for PS, while shrinking the estimates of unassociated haplotypes and PCs. We compare the performance of QBLstrat with the Bayesian counterparts of PCR and LMM and a current method, haplo.stats. Extensive simulation studies and real data analyses show that QBLstrat is superior in controlling false positives while maintaining competitive power for identifying true positives under PS.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2022-0034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Population stratification (PS) is one major source of confounding in both single nucleotide polymorphism (SNP) and haplotype association studies. To address PS, principal component regression (PCR) and linear mixed model (LMM) are the current standards for SNP associations, which are also commonly borrowed for haplotype studies. However, the underfitting and overfitting problems introduced by PCR and LMM, respectively, have yet to be addressed. Furthermore, there have been only a few theoretical approaches proposed to address PS specifically for haplotypes. In this paper, we propose a new method under the Bayesian LASSO framework, QBLstrat, to account for PS in identifying rare and common haplotypes associated with a continuous trait of interest. QBLstrat utilizes a large number of principal components (PCs) with appropriate priors to sufficiently correct for PS, while shrinking the estimates of unassociated haplotypes and PCs. We compare the performance of QBLstrat with the Bayesian counterparts of PCR and LMM and a current method, haplo.stats. Extensive simulation studies and real data analyses show that QBLstrat is superior in controlling false positives while maintaining competitive power for identifying true positives under PS.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.