Developing of SARS-CoV-2 fusion protein expressed in E. coli Shuffle T7 for enhanced ELISA detection sensitivity - an integrated experimental and bioinformatic approach.
{"title":"Developing of SARS-CoV-2 fusion protein expressed in E. coli Shuffle T7 for enhanced ELISA detection sensitivity - an integrated experimental and bioinformatic approach.","authors":"Sohrab Sam, Hamideh Ofoghi, Behrokh Farahmand","doi":"10.1080/07391102.2024.2302941","DOIUrl":null,"url":null,"abstract":"<p><p>In the recent COVID-19 pandemic, developing effective diagnostic assays is crucial for controlling the spread of the SARS-CoV-2 virus. Multi-domain fusion proteins are a promising approach to detecting SARS-CoV-2 antibodies. In this study, we designed an antigen named CoV2-Pro, containing two RBD domains from SARS-CoV-2 Omicron and Delta variants and one CTD domain of the nucleoprotein in the order of RBD-RBD-N, linked by a super flexible glycine linker. We evaluated the suitability of E. coli Shuffle T7 and BL21 (DE3) strain for expressing CoV2-Pro. Moreover, Bioinformatic studies were conducted first to analyze the tertiary structure of CoV2-Pro. The CoV2-Pro sequences were cloned into a pET-32b (+) vector for expression in E. coli Shuffle T7 and BL21 (DE3). SDS-PAGE and western blot confirmed the protein expression and folding structure. The CoV2-Pro-TRX was purified by Ni-NTA affinity chromatography. Dot blot analysis was performed to evaluate the antigenic characterization of the CoV2-Pro. A molecular docking simulation was conducted to assess the binding affinity of CoV2-Pro with LY-COV555 (Bamlanivimab) monoclonal antibody. A molecular dynamic was performed to analyze the stability of the structure. Bioinformatic and experimental studies revealed a stable conformational 3D structure of the CoV2-Pro. The CoV2-Pro interacted with SARS-CoV-2 antibodies, confirming the correct antigenic structure. We assert with confidence that CoV2-Pro is ideal for developing an ELISA assay for precise diagnosis and rigorous vaccine evaluation during the COVID-19 prevalence.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4440-4455"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2302941","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the recent COVID-19 pandemic, developing effective diagnostic assays is crucial for controlling the spread of the SARS-CoV-2 virus. Multi-domain fusion proteins are a promising approach to detecting SARS-CoV-2 antibodies. In this study, we designed an antigen named CoV2-Pro, containing two RBD domains from SARS-CoV-2 Omicron and Delta variants and one CTD domain of the nucleoprotein in the order of RBD-RBD-N, linked by a super flexible glycine linker. We evaluated the suitability of E. coli Shuffle T7 and BL21 (DE3) strain for expressing CoV2-Pro. Moreover, Bioinformatic studies were conducted first to analyze the tertiary structure of CoV2-Pro. The CoV2-Pro sequences were cloned into a pET-32b (+) vector for expression in E. coli Shuffle T7 and BL21 (DE3). SDS-PAGE and western blot confirmed the protein expression and folding structure. The CoV2-Pro-TRX was purified by Ni-NTA affinity chromatography. Dot blot analysis was performed to evaluate the antigenic characterization of the CoV2-Pro. A molecular docking simulation was conducted to assess the binding affinity of CoV2-Pro with LY-COV555 (Bamlanivimab) monoclonal antibody. A molecular dynamic was performed to analyze the stability of the structure. Bioinformatic and experimental studies revealed a stable conformational 3D structure of the CoV2-Pro. The CoV2-Pro interacted with SARS-CoV-2 antibodies, confirming the correct antigenic structure. We assert with confidence that CoV2-Pro is ideal for developing an ELISA assay for precise diagnosis and rigorous vaccine evaluation during the COVID-19 prevalence.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.