Population Pharmacokinetic Modeling of Cotadutide: A Dual Agonist Peptide of Glucagon-Like Peptide and Glucagon Receptors Administered to Participants with Type II Diabetes Mellitus, Chronic Kidney Disease, Obesity and Non-Alcoholic Steatohepatitis.
Hongtao Yu, Magnus Åstrand, Jenny Cheng, Kaila Nitin, Bengt Hamrén, Anis A Khan
{"title":"Population Pharmacokinetic Modeling of Cotadutide: A Dual Agonist Peptide of Glucagon-Like Peptide and Glucagon Receptors Administered to Participants with Type II Diabetes Mellitus, Chronic Kidney Disease, Obesity and Non-Alcoholic Steatohepatitis.","authors":"Hongtao Yu, Magnus Åstrand, Jenny Cheng, Kaila Nitin, Bengt Hamrén, Anis A Khan","doi":"10.1007/s40262-023-01337-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cotadutide is a dual glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptor agonist peptide. The objective of this analysis was to develop a population pharmacokinetic (popPK) model of cotadutide, and to identify any potential effect on the PK from intrinsic and extrinsic covariates.</p><p><strong>Methods: </strong>The popPK analysis utilized a non-linear mixed-effects modeling approach using the data from 10 clinical studies in different participant categories following once-daily subcutaneous dose administration ranging from 20 to 600 μg. Additionally, the covariates affecting cotadutide exposure were quantified, and the model performance was evaluated through the prediction-corrected visual predictive checks.</p><p><strong>Results: </strong>A one-compartment model with first-order absorption and elimination adequately described the data as confirmed via visual predictive check plots and parameter plausibility. The mean values for cotadutide apparent clearance (CL/F), apparent volume of distribution (V/F), absorption rate constant (Ka), and half-life were 1.05 L/h, 20.0 L, 0.38 h<sup>-1</sup>, and 13.3 hours, respectively. Covariate modeling identified body weight, alanine transaminase, albumin, anti-drug antibody (ADA) titer values, formulation strength and injection device, and participant categories as significant covariates on PK parameters, where ADAs have been identified to decrease cotadutide clearance. The model demonstrated that a 150-kg participant was estimated to have 30% lower for both AUC and C<sub>max</sub> and a 66 kg participant was estimated to have 35% higher for both AUC and C<sub>max</sub> relative to a reference individual with a median weight of 96 kg.</p><p><strong>Conclusions: </strong>A popPK model was developed for cotadutide with cotadutide clinical data, and the impact of the statistically significant covariates identified was not considered clinically meaningful. The popPK model will be used to evaluate exposure-response relationships for cotadutide clinical data.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40262-023-01337-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cotadutide is a dual glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptor agonist peptide. The objective of this analysis was to develop a population pharmacokinetic (popPK) model of cotadutide, and to identify any potential effect on the PK from intrinsic and extrinsic covariates.
Methods: The popPK analysis utilized a non-linear mixed-effects modeling approach using the data from 10 clinical studies in different participant categories following once-daily subcutaneous dose administration ranging from 20 to 600 μg. Additionally, the covariates affecting cotadutide exposure were quantified, and the model performance was evaluated through the prediction-corrected visual predictive checks.
Results: A one-compartment model with first-order absorption and elimination adequately described the data as confirmed via visual predictive check plots and parameter plausibility. The mean values for cotadutide apparent clearance (CL/F), apparent volume of distribution (V/F), absorption rate constant (Ka), and half-life were 1.05 L/h, 20.0 L, 0.38 h-1, and 13.3 hours, respectively. Covariate modeling identified body weight, alanine transaminase, albumin, anti-drug antibody (ADA) titer values, formulation strength and injection device, and participant categories as significant covariates on PK parameters, where ADAs have been identified to decrease cotadutide clearance. The model demonstrated that a 150-kg participant was estimated to have 30% lower for both AUC and Cmax and a 66 kg participant was estimated to have 35% higher for both AUC and Cmax relative to a reference individual with a median weight of 96 kg.
Conclusions: A popPK model was developed for cotadutide with cotadutide clinical data, and the impact of the statistically significant covariates identified was not considered clinically meaningful. The popPK model will be used to evaluate exposure-response relationships for cotadutide clinical data.
期刊介绍:
Clinical Pharmacokinetics promotes the continuing development of clinical pharmacokinetics and pharmacodynamics for the improvement of drug therapy, and for furthering postgraduate education in clinical pharmacology and therapeutics.
Pharmacokinetics, the study of drug disposition in the body, is an integral part of drug development and rational use. Knowledge and application of pharmacokinetic principles leads to accelerated drug development, cost effective drug use and a reduced frequency of adverse effects and drug interactions.