Transporting randomized trial results to estimate counterfactual survival functions in target populations.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Pharmaceutical Statistics Pub Date : 2024-07-01 Epub Date: 2024-01-17 DOI:10.1002/pst.2354
Zhiqiang Cao, Youngjoo Cho, Fan Li
{"title":"Transporting randomized trial results to estimate counterfactual survival functions in target populations.","authors":"Zhiqiang Cao, Youngjoo Cho, Fan Li","doi":"10.1002/pst.2354","DOIUrl":null,"url":null,"abstract":"<p><p>When the distributions of treatment effect modifiers differ between a randomized trial and an external target population, the sample average treatment effect in the trial may be substantially different from the target population average treatment, and accurate estimation of the latter requires adjusting for the differential distribution of effect modifiers. Despite the increasingly rich literature on transportability, little attention has been devoted to methods for transporting trial results to estimate counterfactual survival functions in target populations, when the primary outcome is time to event and subject to right censoring. In this article, we study inverse probability weighting and doubly robust estimators to estimate counterfactual survival functions and the target average survival treatment effect in the target population, and provide their respective approximate variance estimators. We focus on a common scenario where the target population information is observed only through a complex survey, and elucidate how the survey weights can be incorporated into each estimator we considered. Simulation studies are conducted to examine the finite-sample performances of the proposed estimators in terms of bias, efficiency and coverage, under both correct and incorrect model specifications. Finally, we apply the proposed method to assess transportability of the results in the Action to Control Cardiovascular Risk in Diabetes-Blood Pressure (ACCORD-BP) trial to all adults with Diabetes in the United States.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"442-465"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2354","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

When the distributions of treatment effect modifiers differ between a randomized trial and an external target population, the sample average treatment effect in the trial may be substantially different from the target population average treatment, and accurate estimation of the latter requires adjusting for the differential distribution of effect modifiers. Despite the increasingly rich literature on transportability, little attention has been devoted to methods for transporting trial results to estimate counterfactual survival functions in target populations, when the primary outcome is time to event and subject to right censoring. In this article, we study inverse probability weighting and doubly robust estimators to estimate counterfactual survival functions and the target average survival treatment effect in the target population, and provide their respective approximate variance estimators. We focus on a common scenario where the target population information is observed only through a complex survey, and elucidate how the survey weights can be incorporated into each estimator we considered. Simulation studies are conducted to examine the finite-sample performances of the proposed estimators in terms of bias, efficiency and coverage, under both correct and incorrect model specifications. Finally, we apply the proposed method to assess transportability of the results in the Action to Control Cardiovascular Risk in Diabetes-Blood Pressure (ACCORD-BP) trial to all adults with Diabetes in the United States.

传输随机试验结果,估算目标人群的反事实生存函数。
当随机试验和外部目标人群的治疗效果修饰因子分布不同时,试验中的样本平均治疗效果可能与目标人群的平均治疗效果大相径庭,而要准确估计后者,就需要对效果修饰因子的不同分布进行调整。尽管有关可迁移性的文献越来越丰富,但人们很少关注如何迁移试验结果,以估计目标人群中的反事实生存函数(当主要结果是事件发生时间并受右侧删减影响时)。在本文中,我们研究了反概率加权法和双重稳健估计法来估计目标人群中的反事实生存函数和目标平均生存治疗效果,并提供了各自的近似方差估计法。我们将重点放在仅通过复杂调查观测到目标人群信息的常见情景上,并阐明了如何将调查权重纳入我们所考虑的每种估计器中。我们还进行了模拟研究,以检验在正确和不正确的模型规格下,所提出的估计器在偏差、效率和覆盖率方面的有限样本性能。最后,我们将提出的方法用于评估控制糖尿病心血管风险-血压(ACCORD-BP)试验结果在美国所有成年糖尿病患者中的可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信