K. Zioutas, V. Anastassopoulos, A. Argiriou, G. Cantatore, S. Cetin, A. Gardikiotis, H. Haralambous, M. Karuza, A. Kryemadhi, M. Maroudas, A. Mastronikolis, C. Oikonomou, K. Ozbozduman, Y. K. Semertzidis, M. Tsagri, I. Tsagris
{"title":"Novel Planetary Signatures from the Dark Universe","authors":"K. Zioutas, V. Anastassopoulos, A. Argiriou, G. Cantatore, S. Cetin, A. Gardikiotis, H. Haralambous, M. Karuza, A. Kryemadhi, M. Maroudas, A. Mastronikolis, C. Oikonomou, K. Ozbozduman, Y. K. Semertzidis, M. Tsagri, I. Tsagris","doi":"10.1007/s10511-024-09809-2","DOIUrl":null,"url":null,"abstract":"<p>“Dunkle Materie” (DM) came from unexpected cosmological observations. Nowadays within our solar system, diverse observations also defy conventional explanations, like the main physical process(es) underlying the heating of the different solar atmospheric layers. Streaming DM offers a viable common scenario following gravitational focusing by the solar system bodies. This fits as the underlying process behind the solar cycle, which was the first signature suggesting a planetary dependency. The challenge, since 1859, is to find a remote planetary impact, beyond the extremely feeble planetary tidal force. We stress the possible involvement of an external impact by some overlooked “streaming invisible matter”, which reconciles all investigated mysterious observations mimicking a not extant remote planetary force. Unexpected planetary relationships exist for both the dynamic Sun and Earth, reflecting multiple signatures for streaming DM. The local reasoning à la Zwicky is also suggestive for searches including puzzling biomedical phenomena. Favourite DM candidates are anti-quark-nuggets, magnetic monopoles, dark photons, or the composite “pearls”. Then, anomalies within the solar system are the manifestation of the dark Universe. The tentative streaming DM scenario enhances spatiotemporally the DM flux</p>","PeriodicalId":479,"journal":{"name":"Astrophysics","volume":"66 4","pages":"550 - 558"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10511-024-09809-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
“Dunkle Materie” (DM) came from unexpected cosmological observations. Nowadays within our solar system, diverse observations also defy conventional explanations, like the main physical process(es) underlying the heating of the different solar atmospheric layers. Streaming DM offers a viable common scenario following gravitational focusing by the solar system bodies. This fits as the underlying process behind the solar cycle, which was the first signature suggesting a planetary dependency. The challenge, since 1859, is to find a remote planetary impact, beyond the extremely feeble planetary tidal force. We stress the possible involvement of an external impact by some overlooked “streaming invisible matter”, which reconciles all investigated mysterious observations mimicking a not extant remote planetary force. Unexpected planetary relationships exist for both the dynamic Sun and Earth, reflecting multiple signatures for streaming DM. The local reasoning à la Zwicky is also suggestive for searches including puzzling biomedical phenomena. Favourite DM candidates are anti-quark-nuggets, magnetic monopoles, dark photons, or the composite “pearls”. Then, anomalies within the solar system are the manifestation of the dark Universe. The tentative streaming DM scenario enhances spatiotemporally the DM flux
期刊介绍:
Astrophysics (Ap) is a peer-reviewed scientific journal which publishes research in theoretical and observational astrophysics. Founded by V.A.Ambartsumian in 1965 Astrophysics is one of the international astronomy journals. The journal covers space astrophysics, stellar and galactic evolution, solar physics, stellar and planetary atmospheres, interstellar matter. Additional subjects include chemical composition and internal structure of stars, quasars and pulsars, developments in modern cosmology and radiative transfer.