Hiroyuki Miyoshi, Henry Rodriguez-Broadbent, Darren G. Crowdy
{"title":"Numerical validation of analytical formulas for channel flows over liquid-infused surfaces","authors":"Hiroyuki Miyoshi, Henry Rodriguez-Broadbent, Darren G. Crowdy","doi":"10.1007/s10665-023-10314-2","DOIUrl":null,"url":null,"abstract":"<p>This paper provides numerical validation of some new explicit, asymptotically exact, analytical formulas describing channel flows over liquid-infused surfaces, an important class of surfaces of current interest in surface engineering. The new asymptotic formulas, reproduced here, were derived in a recent companion paper by the authors. The numerical validation is done by presenting a novel computational method for calculating longitudinal flow in a periodic channel involving finite-length closed liquid-filled grooves with a flat two-fluid interface, a challenging problem given the two-fluid nature of the flow. The formulas are asymptotically exact for wide channels where the grooves on the lower wall of the channel are well separated; the numerical method devised here, however, is subject to no such restrictions. Significantly, it is shown here that the asymptotic formulas remain good global approximants for the flow over a wide range of flow geometries, including those well outside the asymptotic parameter range for which they were derived. It is found that the formulas are more reliable for liquid-infused surfaces than for superhydrophobic surfaces.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"3 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10314-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper provides numerical validation of some new explicit, asymptotically exact, analytical formulas describing channel flows over liquid-infused surfaces, an important class of surfaces of current interest in surface engineering. The new asymptotic formulas, reproduced here, were derived in a recent companion paper by the authors. The numerical validation is done by presenting a novel computational method for calculating longitudinal flow in a periodic channel involving finite-length closed liquid-filled grooves with a flat two-fluid interface, a challenging problem given the two-fluid nature of the flow. The formulas are asymptotically exact for wide channels where the grooves on the lower wall of the channel are well separated; the numerical method devised here, however, is subject to no such restrictions. Significantly, it is shown here that the asymptotic formulas remain good global approximants for the flow over a wide range of flow geometries, including those well outside the asymptotic parameter range for which they were derived. It is found that the formulas are more reliable for liquid-infused surfaces than for superhydrophobic surfaces.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.