{"title":"Stable Synchronous Propagation of Signals by Feedforward Networks","authors":"Ian Stewart, David Wood","doi":"10.1137/23m1552267","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 167-204, March 2024. <br/> Abstract.We analyze the dynamics of networks in which a central pattern generator (CPG) transmits signals along one or more feedforward chains in a synchronous or phase-synchronous manner. Such propagating signals are common in biology, especially in locomotion and peristalsis, and are of interest for continuum robots. We construct such networks as feedforward lifts of the CPG. If the CPG dynamics is periodic, so is the lifted dynamics. Synchrony with the CPG manifests as a standing wave, and a regular phase pattern creates a traveling wave. We discuss Liapunov, asymptotic, and Floquet stability of the lifted periodic orbit and introduce transverse versions of these conditions that imply stability for signals propagating along arbitrarily long chains. We compare these notions to a simpler condition, transverse stability of the synchrony subspace, which is equivalent to Floquet stability when nodes are 1 dimensional.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552267","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 167-204, March 2024. Abstract.We analyze the dynamics of networks in which a central pattern generator (CPG) transmits signals along one or more feedforward chains in a synchronous or phase-synchronous manner. Such propagating signals are common in biology, especially in locomotion and peristalsis, and are of interest for continuum robots. We construct such networks as feedforward lifts of the CPG. If the CPG dynamics is periodic, so is the lifted dynamics. Synchrony with the CPG manifests as a standing wave, and a regular phase pattern creates a traveling wave. We discuss Liapunov, asymptotic, and Floquet stability of the lifted periodic orbit and introduce transverse versions of these conditions that imply stability for signals propagating along arbitrarily long chains. We compare these notions to a simpler condition, transverse stability of the synchrony subspace, which is equivalent to Floquet stability when nodes are 1 dimensional.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.