Global Existence and Long-Time Behavior in the 1 + 1-Dimensional Principal Chiral Model with Applications to Solitons

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Jessica Trespalacios
{"title":"Global Existence and Long-Time Behavior in the 1 + 1-Dimensional Principal Chiral Model with Applications to Solitons","authors":"Jessica Trespalacios","doi":"10.1007/s00023-023-01405-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the 1 + 1-dimensional vector-valued principal chiral field model (PCF) obtained as a simplification of the vacuum Einstein field equations under the Belinski–Zakharov symmetry. PCF is an integrable model, but a rigorous description of its evolution is far from complete. Here we provide the existence of local solutions in a suitable chosen energy space, as well as small global smooth solutions under a certain non degeneracy condition. We also construct virial functionals which provide a clear description of decay of smooth global solutions inside the light cone. Finally, some applications are presented in the case of PCF solitons, a first step toward the study of its nonlinear stability.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 11","pages":"4671 - 4712"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01405-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the 1 + 1-dimensional vector-valued principal chiral field model (PCF) obtained as a simplification of the vacuum Einstein field equations under the Belinski–Zakharov symmetry. PCF is an integrable model, but a rigorous description of its evolution is far from complete. Here we provide the existence of local solutions in a suitable chosen energy space, as well as small global smooth solutions under a certain non degeneracy condition. We also construct virial functionals which provide a clear description of decay of smooth global solutions inside the light cone. Finally, some applications are presented in the case of PCF solitons, a first step toward the study of its nonlinear stability.

Abstract Image

Abstract Image

1 + 1 维主手性模型中的全局存在性和长时间行为及其对孤子的应用
在本文中,我们考虑了在贝林斯基-扎哈罗夫对称性下,作为真空爱因斯坦场方程的简化而得到的 1 + 1 维矢量值主手性场模型(PCF)。PCF 是一个可积分模型,但对其演化的严格描述远未完成。在这里,我们提供了在合适的选定能量空间中存在的局部解,以及在一定的非退化条件下存在的小的全局平稳解。我们还构建了病毒式函数,清晰描述了光锥内光滑全局解的衰变。最后,我们介绍了 PCF 孤子的一些应用,这是研究其非线性稳定性的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信