{"title":"Deep Neural Network-Based Cloth Collision Detection Algorithm","authors":"Yanxia Jin, Zhiru Shi, Jing Yang, Yabian Liu, Xingyu Qiao, Ling Zhang","doi":"10.1155/2024/7889278","DOIUrl":null,"url":null,"abstract":"The quality of collision detection algorithm directly affects the performance of the whole simulation system. To address the low efficiency and low accuracy in detecting the collisions of flexible cloths in virtual environments, this paper proposes an oriented bounding box (OBB) algorithm with a simplified model, tree structure for a root-node double bounding box, and continuous collision detection algorithm incorporating an OpenNN-based neural network optimization. First, for objects interacting with the cloths with more complex modeling, the model is simplified with a surface simplification algorithm based on the quadric error metrics, and the simplified model is used to construct an OBB. Second, a bounding box technique commonly used for collision detection is improved, and a root-node double bounding box algorithm is proposed to reduce the construction time for the bounding box. Finally, neural networks are used to optimize the continuous collision detection algorithm, as neural networks can efficiently process large amounts of data and remove disjoint collision pairs. An experiment shows that the construction of an OBB using the simplified model is almost identical to that of the original model, but the taken to construct the OBB is reduced by a factor of approximately 2.7. For the same cloth, it takes 5.51%–11.32% less time to run the root-node double bounding box algorithm than the traditional-hybrid bounding box algorithm. With an average removal rate nearly identical to that of the traditional filtering method, the elapsed time is reduced by 7%–11% by using the continuous collision detection algorithm based on an OpenNN neural network optimization. The simulation results are realistic and in line with the requirements for real-time cloth simulations.","PeriodicalId":22091,"journal":{"name":"Scientific Programming","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/7889278","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The quality of collision detection algorithm directly affects the performance of the whole simulation system. To address the low efficiency and low accuracy in detecting the collisions of flexible cloths in virtual environments, this paper proposes an oriented bounding box (OBB) algorithm with a simplified model, tree structure for a root-node double bounding box, and continuous collision detection algorithm incorporating an OpenNN-based neural network optimization. First, for objects interacting with the cloths with more complex modeling, the model is simplified with a surface simplification algorithm based on the quadric error metrics, and the simplified model is used to construct an OBB. Second, a bounding box technique commonly used for collision detection is improved, and a root-node double bounding box algorithm is proposed to reduce the construction time for the bounding box. Finally, neural networks are used to optimize the continuous collision detection algorithm, as neural networks can efficiently process large amounts of data and remove disjoint collision pairs. An experiment shows that the construction of an OBB using the simplified model is almost identical to that of the original model, but the taken to construct the OBB is reduced by a factor of approximately 2.7. For the same cloth, it takes 5.51%–11.32% less time to run the root-node double bounding box algorithm than the traditional-hybrid bounding box algorithm. With an average removal rate nearly identical to that of the traditional filtering method, the elapsed time is reduced by 7%–11% by using the continuous collision detection algorithm based on an OpenNN neural network optimization. The simulation results are realistic and in line with the requirements for real-time cloth simulations.
期刊介绍:
Scientific Programming is a peer-reviewed, open access journal that provides a meeting ground for research results in, and practical experience with, software engineering environments, tools, languages, and models of computation aimed specifically at supporting scientific and engineering computing.
The journal publishes papers on language, compiler, and programming environment issues for scientific computing. Of particular interest are contributions to programming and software engineering for grid computing, high performance computing, processing very large data sets, supercomputing, visualization, and parallel computing. All languages used in scientific programming as well as scientific programming libraries are within the scope of the journal.