Sharp gradient estimate, rigidity and almost rigidity of Green functions on non-parabolic RCD(0, N) spaces

IF 1.3 3区 数学 Q1 MATHEMATICS
Shouhei Honda, Yuanlin Peng
{"title":"Sharp gradient estimate, rigidity and almost rigidity of Green functions on non-parabolic RCD(0, N) spaces","authors":"Shouhei Honda, Yuanlin Peng","doi":"10.1017/prm.2024.131","DOIUrl":null,"url":null,"abstract":"<p>Inspired by a result in T. H. Colding. (16). <span>Acta. Math.</span> <span>209</span>(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function <span><span><span data-mathjax-type=\"texmath\"><span>$G$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline2.png\"/></span></span> on a non-parabolic <span><span><span data-mathjax-type=\"texmath\"><span>$\\operatorname {RCD}(0,\\,N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline3.png\"/></span></span> space <span><span><span data-mathjax-type=\"texmath\"><span>$(X,\\, \\mathsf {d},\\, \\mathfrak {m})$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline4.png\"/></span></span> for some finite <span><span><span data-mathjax-type=\"texmath\"><span>$N&gt;2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline5.png\"/></span></span>. Defining <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathsf {b}_x=G(x,\\, \\cdot )^{\\frac {1}{2-N}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline6.png\"/></span></span> for a point <span><span><span data-mathjax-type=\"texmath\"><span>$x \\in X$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline7.png\"/></span></span>, which plays a role of a smoothed distance function from <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline8.png\"/></span></span>, we prove that the gradient <span><span><span data-mathjax-type=\"texmath\"><span>$|\\nabla \\mathsf {b}_x|$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline9.png\"/></span></span> has the canonical pointwise representative with the sharp upper bound in terms of the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline10.png\"/></span></span>-volume density <span><span><span data-mathjax-type=\"texmath\"><span>$\\nu _x=\\lim _{r\\to 0^+}\\frac {\\mathfrak {m} (B_r(x))}{r^N}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline11.png\"/></span></span> of <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {m}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline12.png\"/></span></span> at <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline13.png\"/></span></span>;<span><span data-mathjax-type=\"texmath\"><span>\\[ |\\nabla \\mathsf{b}_x|(y) \\le \\left(N(N-2)\\nu_x\\right)^{\\frac{1}{N-2}}, \\quad \\text{for any }y \\in X \\setminus \\{x\\}. \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_eqnU1.png\"/></span>Moreover the rigidity is obtained, namely, the upper bound is attained at a point <span><span><span data-mathjax-type=\"texmath\"><span>$y \\in X \\setminus \\{x\\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline14.png\"/></span></span> if and only if the space is isomorphic to the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline15.png\"/></span></span>-metric measure cone over an <span><span><span data-mathjax-type=\"texmath\"><span>$\\operatorname {RCD}(N-2,\\, N-1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline16.png\"/></span></span> space. In the case when <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline17.png\"/></span></span> is an <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline18.png\"/></span></span>-regular point, the rigidity states an isomorphism to the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline19.png\"/></span></span>-dimensional Euclidean space <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline20.png\"/></span></span>, thus, this extends the result of Colding to <span><span><span data-mathjax-type=\"texmath\"><span>$\\operatorname {RCD}(0,\\,N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline21.png\"/></span></span> spaces. It is emphasized that the almost rigidities are also proved, which are new even in the smooth framework.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"23 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.131","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by a result in T. H. Colding. (16). Acta. Math. 209(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function $G$Abstract Image on a non-parabolic $\operatorname {RCD}(0,\,N)$Abstract Image space $(X,\, \mathsf {d},\, \mathfrak {m})$Abstract Image for some finite $N>2$Abstract Image. Defining $\mathsf {b}_x=G(x,\, \cdot )^{\frac {1}{2-N}}$Abstract Image for a point $x \in X$Abstract Image, which plays a role of a smoothed distance function from $x$Abstract Image, we prove that the gradient $|\nabla \mathsf {b}_x|$Abstract Image has the canonical pointwise representative with the sharp upper bound in terms of the $N$Abstract Image-volume density $\nu _x=\lim _{r\to 0^+}\frac {\mathfrak {m} (B_r(x))}{r^N}$Abstract Image of $\mathfrak {m}$Abstract Image at $x$Abstract Image;\[ |\nabla \mathsf{b}_x|(y) \le \left(N(N-2)\nu_x\right)^{\frac{1}{N-2}}, \quad \text{for any }y \in X \setminus \{x\}. \]Abstract ImageMoreover the rigidity is obtained, namely, the upper bound is attained at a point $y \in X \setminus \{x\}$Abstract Image if and only if the space is isomorphic to the $N$Abstract Image-metric measure cone over an $\operatorname {RCD}(N-2,\, N-1)$Abstract Image space. In the case when $x$Abstract Image is an $N$Abstract Image-regular point, the rigidity states an isomorphism to the $N$Abstract Image-dimensional Euclidean space $\mathbb {R}^N$Abstract Image, thus, this extends the result of Colding to $\operatorname {RCD}(0,\,N)$Abstract Image spaces. It is emphasized that the almost rigidities are also proved, which are new even in the smooth framework.

非抛物线 RCD(0, N) 空间上格林函数的锐梯度估计、刚性和近似刚性
灵感来自 T. H. Colding 的一个结果。(16).Acta.Math.209(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function $G$ on a non-parabolic $operatorname {RCD}(0,\,N)$ space $(X,\, \mathsf {d},\, \mathfrak {m})$ for some finite $N>2$.对于 X$ 中的点$x,定义$mathsf {b}_x=G(x,\, \cdot )^{\frac {1}{2-N}}$ ,它起着从$x$出发的平滑距离函数的作用、我们证明梯度$|\nabla \mathsf {b}_x|$ 在$x$处的$\mathfrak {m}$ 的$N$-体积密度$\nu _x=\lim _{r\to 0^+}\frac {mathfrak {m} (B_r(x))}{r^N}$ 具有具有尖锐上界的典型点代表;|\nabla \mathsf{b}_x|(y) \le \left(N(N-2)\nu_x\right)^{frac{1}{N-2}}, \quad \text{for any }y \in X \setminus \{x\}。\]此外,我们还得到了刚性,即只有当且仅当空间与$operatorname {RCD}(N-2,\, N-1)$空间上的$N$度量锥同构时,在$y \in X setminus \{x\}$上的点才会达到上界。在 $x$ 是一个 $N$ 不规则点的情况下,刚度与 $N$ 维欧几里得空间 $mathbb {R}^N$ 同构,因此,这将科尔丁的结果扩展到了 $\operatorname {RCD}(0,\,N)$ 空间。需要强调的是,几乎刚性也得到了证明,这即使在光滑框架中也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信