{"title":"Evidence of additive genetic variation for major milk proteins in dairy cows: A meta-analysis","authors":"Navid Ghavi Hossein-Zadeh","doi":"10.1111/jbg.12850","DOIUrl":null,"url":null,"abstract":"<p>In the past, there have been reports of genetic parameters for milk proteins in various dairy cattle populations. The high variability among genetic parameter estimates has been caused by this. This study aimed to use a random-effects meta-analysis model to compile published estimates of genetic parameter for major milk proteins of α-lactalbumin, β-lactoglobulin, sum of whey proteins, casein, α<sub>s1</sub>-casein, α<sub>s2</sub>-casein, β-casein, and κ-casein in dairy cows. The study used a total of 140 heritability and 256 genetic correlation estimates from 23 papers published between 2004 and 2022. The estimated range of milk protein heritability is from 0.284 (for α-lactalbumin in milk) to 0.596 (for sum of whey proteins). The genetic correlation estimates between casein and milk yield, milk fat and protein percentages were −0.461, 0.693, and 0.976, respectively (<i>p</i> < 0.05). The genetic correlation estimates between milk proteins expressed as a percentage of milk were significant and varied from 0.177 (between β-lactoglobulin and κ-casein) to 0.892 (between α<sub>s1</sub>-casein and α<sub>s2</sub>-casein). Moderate-to-high heritability estimates for milk proteins and their low genetic associations with milk yield and composition indicated the possibility for improving milk proteins in a genetic selection plan with negligible correlated effects on production traits in dairy cows.</p>","PeriodicalId":54885,"journal":{"name":"Journal of Animal Breeding and Genetics","volume":"141 4","pages":"379-389"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Breeding and Genetics","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jbg.12850","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the past, there have been reports of genetic parameters for milk proteins in various dairy cattle populations. The high variability among genetic parameter estimates has been caused by this. This study aimed to use a random-effects meta-analysis model to compile published estimates of genetic parameter for major milk proteins of α-lactalbumin, β-lactoglobulin, sum of whey proteins, casein, αs1-casein, αs2-casein, β-casein, and κ-casein in dairy cows. The study used a total of 140 heritability and 256 genetic correlation estimates from 23 papers published between 2004 and 2022. The estimated range of milk protein heritability is from 0.284 (for α-lactalbumin in milk) to 0.596 (for sum of whey proteins). The genetic correlation estimates between casein and milk yield, milk fat and protein percentages were −0.461, 0.693, and 0.976, respectively (p < 0.05). The genetic correlation estimates between milk proteins expressed as a percentage of milk were significant and varied from 0.177 (between β-lactoglobulin and κ-casein) to 0.892 (between αs1-casein and αs2-casein). Moderate-to-high heritability estimates for milk proteins and their low genetic associations with milk yield and composition indicated the possibility for improving milk proteins in a genetic selection plan with negligible correlated effects on production traits in dairy cows.
期刊介绍:
The Journal of Animal Breeding and Genetics publishes original articles by international scientists on genomic selection, and any other topic related to breeding programmes, selection, quantitative genetic, genomics, diversity and evolution of domestic animals. Researchers, teachers, and the animal breeding industry will find the reports of interest. Book reviews appear in many issues.