Unveiling the potential of recently FDA-approved drugs as quorum sensing inhibitors against P. Aeruginosa using high-performance computational techniques.
{"title":"Unveiling the potential of recently FDA-approved drugs as quorum sensing inhibitors against <i>P. Aeruginosa</i> using high-performance computational techniques.","authors":"Debanjan Dey, Anoop Kumar","doi":"10.1080/07391102.2024.2304682","DOIUrl":null,"url":null,"abstract":"<p><p>Through cell-to-cell communication, activation of efflux pumps, formation of biofilms, and other mechanisms, <i>pseudomonas aeruginosa's</i> quorum sensing systems (QSS), notably the lasl/las-r system, contribute a vital role in the development of anti-microbial resistance (AMR). Identifying potential drugs against these targets could have significant implications for combating <i>pseudomonal</i> infections. The current study aims to identify promising recently FDA-approved drugs against lasl/las-r proteins. The ligands were selected from the FDA-approved drug lists of the last 5 years. Out of 202, 78 drugs were checked for interaction with lasl/las-r protein and 4 drugs revealed top binding conformations characterized by favorable energetic profiles within the active site of the las-r protein which were further assigned for 250-ns molecular dynamics (MD) simulation. The MD analysis confirmed the dynamical stability of brexanolone and oteseconazole with las-r protein. The root mean square deviation (RMSD), radius of gyration (Rg) and solvent-accessible surface area (SASA) analysis have indicated less deviation, more compactness of protein and less exposure of protein ligand complex to its surroundings as compared to the reference ligand-protein complex. The hydroxyl group in the oteseconazole whereas hydroxyl and ketone group in the brexanolone were responsible for hydrogen bonds with the active site residue of las r ptotein as indicated by ligand-protein contacts diagram. The binding energies per residue analysis revealed TYR-47 as the most contributing amino acid residue for interaction with oteseconazole and brexanolone. The identified drugs may be potential repurposing candidates against <i>pseudomonal</i> infections through inhibition of las-r protein.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4698-4715"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2304682","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Through cell-to-cell communication, activation of efflux pumps, formation of biofilms, and other mechanisms, pseudomonas aeruginosa's quorum sensing systems (QSS), notably the lasl/las-r system, contribute a vital role in the development of anti-microbial resistance (AMR). Identifying potential drugs against these targets could have significant implications for combating pseudomonal infections. The current study aims to identify promising recently FDA-approved drugs against lasl/las-r proteins. The ligands were selected from the FDA-approved drug lists of the last 5 years. Out of 202, 78 drugs were checked for interaction with lasl/las-r protein and 4 drugs revealed top binding conformations characterized by favorable energetic profiles within the active site of the las-r protein which were further assigned for 250-ns molecular dynamics (MD) simulation. The MD analysis confirmed the dynamical stability of brexanolone and oteseconazole with las-r protein. The root mean square deviation (RMSD), radius of gyration (Rg) and solvent-accessible surface area (SASA) analysis have indicated less deviation, more compactness of protein and less exposure of protein ligand complex to its surroundings as compared to the reference ligand-protein complex. The hydroxyl group in the oteseconazole whereas hydroxyl and ketone group in the brexanolone were responsible for hydrogen bonds with the active site residue of las r ptotein as indicated by ligand-protein contacts diagram. The binding energies per residue analysis revealed TYR-47 as the most contributing amino acid residue for interaction with oteseconazole and brexanolone. The identified drugs may be potential repurposing candidates against pseudomonal infections through inhibition of las-r protein.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.