{"title":"Tobacco-enhanced biofilm formation by Porphyromonas gingivalis and other oral microbes.","authors":"Jinlian Tan, Gwyneth J Lamont, David A Scott","doi":"10.1111/omi.12450","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial biofilms promote pathogenesis by disguising antigens, facilitating immune evasion, providing protection against antibiotics and other antimicrobials and, generally, fostering survival and persistence. Environmental fluxes are known to influence biofilm formation and composition, with recent data suggesting that tobacco and tobacco-derived stimuli are particularly important mediators of biofilm initiation and development in vitro and determinants of polymicrobial communities in vivo. The evidence for tobacco-augmented biofilm formation by oral bacteria, tobacco-induced oral dysbiosis, tobacco-resistance strategies, and bacterial physiology is summarized herein. A general overview is provided alongside specific insights gained through studies of the model and archetypal, anaerobic, Gram-negative oral pathobiont, Porphyromonas gingivalis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"270-290"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12450","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial biofilms promote pathogenesis by disguising antigens, facilitating immune evasion, providing protection against antibiotics and other antimicrobials and, generally, fostering survival and persistence. Environmental fluxes are known to influence biofilm formation and composition, with recent data suggesting that tobacco and tobacco-derived stimuli are particularly important mediators of biofilm initiation and development in vitro and determinants of polymicrobial communities in vivo. The evidence for tobacco-augmented biofilm formation by oral bacteria, tobacco-induced oral dysbiosis, tobacco-resistance strategies, and bacterial physiology is summarized herein. A general overview is provided alongside specific insights gained through studies of the model and archetypal, anaerobic, Gram-negative oral pathobiont, Porphyromonas gingivalis.
期刊介绍:
Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections.
Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal.
The journal does not publish Short Communications or Letters to the Editor.
Molecular Oral Microbiology is published bimonthly.