Ancient solutions and translators of Lagrangian mean curvature flow

{"title":"Ancient solutions and translators of Lagrangian mean curvature flow","authors":"","doi":"10.1007/s10240-023-00143-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Suppose that ℳ is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in <span> <span>\\(\\mathbf {C} ^{n}\\)</span> </span>. We show that if ℳ has a blow-down given by the static union of two Lagrangian subspaces with distinct Lagrangian angles that intersect along a line, then ℳ is a translator. In particular in <span> <span>\\(\\mathbf {C} ^{2}\\)</span> </span>, all almost calibrated, exact, ancient solutions of Lagrangian mean curvature flow with entropy less than 3 are special Lagrangian, a union of planes, or translators.</p>","PeriodicalId":516319,"journal":{"name":"Publications mathématiques de l'IHÉS","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications mathématiques de l'IHÉS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10240-023-00143-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that ℳ is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in \(\mathbf {C} ^{n}\) . We show that if ℳ has a blow-down given by the static union of two Lagrangian subspaces with distinct Lagrangian angles that intersect along a line, then ℳ is a translator. In particular in \(\mathbf {C} ^{2}\) , all almost calibrated, exact, ancient solutions of Lagrangian mean curvature flow with entropy less than 3 are special Lagrangian, a union of planes, or translators.

拉格朗日平均曲率流的古解和平移器
Abstract Suppose that ℳ is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in \(\mathbf {C} ^{n}\) .我们证明,如果ℳ有一个由两个具有不同拉格朗日角的拉格朗日子空间的静态联合给出的吹落,并且这两个拉格朗日子空间沿着一条线相交,那么ℳ就是一个平移。特别是在\(\mathbf {C} ^{2}\)中,所有熵小于3的拉格朗日平均曲率流的几乎校准的、精确的、古老的解都是特殊的拉格朗日、平面的联合或平移器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信