Higher-order isospin-symmetry-breaking corrections to nuclear matrix elements of Fermiβdecays

IF 3.1 2区 物理与天体物理 Q1 Physics and Astronomy
L. Xayavong, N. A. Smirnova
{"title":"Higher-order isospin-symmetry-breaking corrections to nuclear matrix elements of Fermiβdecays","authors":"L. Xayavong, N. A. Smirnova","doi":"10.1103/physrevc.109.014317","DOIUrl":null,"url":null,"abstract":"Within the nuclear shell model, we derive the exact expression for the isospin-symmetry breaking correction to the nuclear matrix element of Fermi <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>β</mi></math> decays. Based on a perturbation expansion in small quantities, such as the deviation of the overlap integral between proton and neutron radial wave functions from unity and of the transition density from its isospin-symmetry value, we demonstrate that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>δ</mi><mi>C</mi></msub></math> can be obtained as a sum of six terms. These terms comprise two leading order (LO) terms, two next-to-leading order (NLO) terms, one next-to-next-to-leading order (NNLO) term, and one next-to-next-to-next-to-leading order (NNNLO) term. While the first two terms have been considered in a series of shell-model calculations [J. C. Hardy and I. S. Towner, <span>Phys. Rev. C</span> <b>102</b>, 045501 (2020), and references therein], the remaining four terms have been neglected. A numerical calculation has been carried out for 24 superallowed <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions (18 isotriplets and six isoquintets) and three non-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions, across the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mi>f</mi></mrow></math> shells. For most <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions, the higher-order contribution is of the order <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>%</mo></mrow></math> or smaller, well below the typical theoretical errors quantified within the shell model with Woods-Saxon radial wave functions given in the reference cited above. However, for specific cases such as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Br</mi><mprescripts></mprescripts><none></none><mn>70</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mn>74</mn></mmultiscripts></math>, where weakly bound effect dominates, it increases considerably, becoming comparable to or even exceeding the errors in the isospin mixing component of the LO terms. In the cases of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Mg</mi><mprescripts></mprescripts><none></none><mn>20</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Fe</mi><mprescripts></mprescripts><none></none><mn>48</mn></mmultiscripts></math>, as well as in non-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mn>0</mn><mo>+</mo></msup><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></math> transitions, the higher-order contribution becomes more substantial. Notably, it reaches as large as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>−</mo><mn>4.460</mn><mo>%</mo></mrow></math> in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><none></none><mn>31</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>−</mo><mn>2.027</mn><mo>%</mo></mrow></math> in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><none></none><mn>32</mn></mmultiscripts></math>, due to the concurrent effect of the weakly bound and strong isospin mixing in their daughter nuclei. In contrast, for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi mathvariant=\"normal\">P</mi><mprescripts></mprescripts><none></none><mn>26</mn></mmultiscripts></math>, the NLO terms, despite their substantial magnitude, effectively cancel each other out due to their opposite signs.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"15 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.109.014317","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Within the nuclear shell model, we derive the exact expression for the isospin-symmetry breaking correction to the nuclear matrix element of Fermi β decays. Based on a perturbation expansion in small quantities, such as the deviation of the overlap integral between proton and neutron radial wave functions from unity and of the transition density from its isospin-symmetry value, we demonstrate that δC can be obtained as a sum of six terms. These terms comprise two leading order (LO) terms, two next-to-leading order (NLO) terms, one next-to-next-to-leading order (NNLO) term, and one next-to-next-to-next-to-leading order (NNNLO) term. While the first two terms have been considered in a series of shell-model calculations [J. C. Hardy and I. S. Towner, Phys. Rev. C 102, 045501 (2020), and references therein], the remaining four terms have been neglected. A numerical calculation has been carried out for 24 superallowed 0+0+ transitions (18 isotriplets and six isoquintets) and three non-0+0+ transitions, across the p to pf shells. For most 0+0+ transitions, the higher-order contribution is of the order 103% or smaller, well below the typical theoretical errors quantified within the shell model with Woods-Saxon radial wave functions given in the reference cited above. However, for specific cases such as Br70 and Rb74, where weakly bound effect dominates, it increases considerably, becoming comparable to or even exceeding the errors in the isospin mixing component of the LO terms. In the cases of Mg20 and Fe48, as well as in non-0+0+ transitions, the higher-order contribution becomes more substantial. Notably, it reaches as large as 4.460% in Cl31 and 2.027% in Cl32, due to the concurrent effect of the weakly bound and strong isospin mixing in their daughter nuclei. In contrast, for P26, the NLO terms, despite their substantial magnitude, effectively cancel each other out due to their opposite signs.
费米β衰变核矩阵元素的高阶打破等空间对称性修正
在核壳模型中,我们推导出了费米 β 衰变核矩阵元素的等空间对称性破缺修正的精确表达式。基于小量的扰动展开,例如质子和中子径向波函数的重叠积分与统一值的偏差,以及跃迁密度与其等空间对称值的偏差,我们证明δC 可以作为六个项的总和来获得。这些项包括两个前导阶(LO)项、两个次前导阶(NLO)项、一个次下前导阶(NNLO)项和一个次下前导阶(NNNLO)项。虽然前两个项已经在一系列壳模型计算中得到了考虑 [J. C. Hardy 和 I. S. S. J.C. Hardy 和 I. S. Towner,Phys. Rev. C 102, 045501 (2020),以及其中的参考文献],其余四个项则被忽略。我们对 24 个超允许的 0+→0+ 转变(18 个等三元组和 6 个等五元组)和 3 个非 0+→0+ 转变进行了数值计算,横跨 p 至 pf 壳。对于大多数 0+→0+ 转变,高阶贡献率约为 10-3% 或更小,远低于上文引用的伍兹-撒克逊径向波函数壳模型量化的典型理论误差。然而,在 Br70 和 Rb74 等弱束缚效应占主导地位的特定情况下,高阶贡献会大幅增加,与 LO 项中等空混合分量的误差相当,甚至超过。在 Mg20 和 Fe48 的情况下,以及在非 0+→0+ 转变中,高阶贡献变得更为可观。值得注意的是,在 Cl31 和 Cl32 中,由于它们的子核中弱束缚和强异空间混合的同时作用,高阶贡献率分别达到了-4.460%和-2.027%。相比之下,对于 P26,尽管 NLO 项的量级很大,但由于它们的符号相反,因此实际上相互抵消了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review C
Physical Review C 物理-物理:核物理
CiteScore
5.70
自引率
35.50%
发文量
0
审稿时长
1-2 weeks
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信