Mohammed Hachemi, Ahmed Guenanou, Redouane Chebout, Fouzia Touahra, Khaldoun Bachari
{"title":"Three-Dimensional Free Vibration Analysis of Sandwich Plates with VSCL Face Sheets and Porous Functionally Graded Core","authors":"Mohammed Hachemi, Ahmed Guenanou, Redouane Chebout, Fouzia Touahra, Khaldoun Bachari","doi":"10.1007/s40997-023-00744-9","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the free vibration analysis of sandwich plates with variable stiffness composite laminated (VSCL) face sheets and a functionally graded (FG) porous core. The problem is solved using the hierarchical finite element method (FEM) based on the three-dimensional (3-D) elasticity theory. The use of an FG material core in a VSCL sandwich plate offers many advantages in terms of lightweight properties, high stiffness, as well as high strength and toughness. The sandwich plate is modeled by an assembly of 3-D <i>p</i>-elements, where each element or layer has an independent thickness and material properties. The layers of the sandwich plate are assumed to be perfectly bonded between the interfaces. The present 3-D solutions are validated through convergence and comparison studies with the published results of various sandwich plates that employ different theories and methods. A parametric study is performed to investigate the effects of several factors, including the volume fraction function index, porosity, core-to-face sheet thickness ratio, plate thickness, fiber orientation angles and boundary conditions on the vibrational frequencies. The results show that the incorporation of composite curvilinear fibers in the face sheets, combined with a porous FG core, significantly enhances the stiffness of the sandwich plate. These results can be used to establish benchmarks for future comparisons.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":"30 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00744-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the free vibration analysis of sandwich plates with variable stiffness composite laminated (VSCL) face sheets and a functionally graded (FG) porous core. The problem is solved using the hierarchical finite element method (FEM) based on the three-dimensional (3-D) elasticity theory. The use of an FG material core in a VSCL sandwich plate offers many advantages in terms of lightweight properties, high stiffness, as well as high strength and toughness. The sandwich plate is modeled by an assembly of 3-D p-elements, where each element or layer has an independent thickness and material properties. The layers of the sandwich plate are assumed to be perfectly bonded between the interfaces. The present 3-D solutions are validated through convergence and comparison studies with the published results of various sandwich plates that employ different theories and methods. A parametric study is performed to investigate the effects of several factors, including the volume fraction function index, porosity, core-to-face sheet thickness ratio, plate thickness, fiber orientation angles and boundary conditions on the vibrational frequencies. The results show that the incorporation of composite curvilinear fibers in the face sheets, combined with a porous FG core, significantly enhances the stiffness of the sandwich plate. These results can be used to establish benchmarks for future comparisons.
期刊介绍:
Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well
as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing.
The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.