E. A. Baranov, V. A. Nepomnyashchikh, V. O. Konstantinov, V. G. Shchukin, I. E. Merkulova, A. O. Zamchiy, N. A. Lunev, V. A. Volodin, A. A. Shapovalova
{"title":"INFLUENCE OF CURRENT DENSITY ON THE STRUCTURE OF AMORPHOUS SILICON SUBOXIDE THIN FILMS UNDER ELECTRON-BEAM ANNEALING","authors":"E. A. Baranov, V. A. Nepomnyashchikh, V. O. Konstantinov, V. G. Shchukin, I. E. Merkulova, A. O. Zamchiy, N. A. Lunev, V. A. Volodin, A. A. Shapovalova","doi":"10.1134/S0021894423050061","DOIUrl":null,"url":null,"abstract":"<p>Electron-beam annealing of an amorphous silicon suboxide thin film with a stoichiometric coefficient of 0.5 was carried out in a vacuum chamber. The exposure time was 10 min at an accelerating electron-beam voltage of 1000 V and a current strength of 75 mA. Using probe measurements and calculations, the current density distribution over the electron-beam cross section was obtained assuming a normal distribution. The current density on the beam axis was 0.8 mA/mm<sup>2</sup>. The electron-beam annealing of the amorphous silicon suboxide thin film led to the formation of crystalline silicon nanoparticles with a size of <span>\\((4.1\\pm 0.1)\\)</span> nm. The crystallite sizes did not depend on the electron-beam current density, in contrast to the degree of crystallinity, which decreased from 40% on the beam axis to zero (amorphous structure) on the periphery. It is suggested that during the formation of nanocrystalline silicon, a liquid phase is formed.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"64 5","pages":"778 - 783"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894423050061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Electron-beam annealing of an amorphous silicon suboxide thin film with a stoichiometric coefficient of 0.5 was carried out in a vacuum chamber. The exposure time was 10 min at an accelerating electron-beam voltage of 1000 V and a current strength of 75 mA. Using probe measurements and calculations, the current density distribution over the electron-beam cross section was obtained assuming a normal distribution. The current density on the beam axis was 0.8 mA/mm2. The electron-beam annealing of the amorphous silicon suboxide thin film led to the formation of crystalline silicon nanoparticles with a size of \((4.1\pm 0.1)\) nm. The crystallite sizes did not depend on the electron-beam current density, in contrast to the degree of crystallinity, which decreased from 40% on the beam axis to zero (amorphous structure) on the periphery. It is suggested that during the formation of nanocrystalline silicon, a liquid phase is formed.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.