{"title":"Geometry of canonical genus 4 curves","authors":"Fatemeh Rezaee","doi":"10.1112/plms.12577","DOIUrl":null,"url":null,"abstract":"We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall-crossing. This article provides the first description of a moduli space of Pandharipande–Thomas stable pairs that is used as an intermediate step toward the description of the associated Hilbert scheme, which in turn is the first example where the components of a classical moduli space were completely determined via wall-crossing. We give a full list of irreducible components of the space of stable pairs, along with a birational description of each component, and a partial list for the Hilbert scheme. There are several long standing open problems regarding classical sheaf theoretic moduli spaces, and the present work will shed light on further studies of such moduli spaces such as Hilbert schemes of curves and moduli of stable pairs that are very hard to tackle without the wall-crossing techniques.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"13 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12577","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall-crossing. This article provides the first description of a moduli space of Pandharipande–Thomas stable pairs that is used as an intermediate step toward the description of the associated Hilbert scheme, which in turn is the first example where the components of a classical moduli space were completely determined via wall-crossing. We give a full list of irreducible components of the space of stable pairs, along with a birational description of each component, and a partial list for the Hilbert scheme. There are several long standing open problems regarding classical sheaf theoretic moduli spaces, and the present work will shed light on further studies of such moduli spaces such as Hilbert schemes of curves and moduli of stable pairs that are very hard to tackle without the wall-crossing techniques.
期刊介绍:
The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers.
The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.