Claude Bertin Nzoundja Fapi, Hyacinthe Tchakounté, Fabrice Tsegaing Tchatchueng, Patrice Wira, Mohamed Louzazni, Martin Kamta
{"title":"Recent Advancements in Maximum Power Point Tracking with Hill Climbing Method for a PV System: A Review","authors":"Claude Bertin Nzoundja Fapi, Hyacinthe Tchakounté, Fabrice Tsegaing Tchatchueng, Patrice Wira, Mohamed Louzazni, Martin Kamta","doi":"10.3103/S0003701X23600224","DOIUrl":null,"url":null,"abstract":"<p>Increasing the efficiency of photovoltaic (PV) solar panels is more and more the quest of many scientists because it is renewable and non-polluting energy. For this purpose, various methods and techniques are used, among which is the Maximum Power Point Tracking (MPPT) method, which has a certain interest because it does not require additional mechanical devices. One of the most used MPPT methods is the Hill Climbing (HC) method which has known a lot of evolution with time. The objective of this work is to scrutinize and present a comprehensive review of the improved Hill Climbing algorithms for tracking the Maximum Power Point (MPP) in PV systems. In-depth descriptions of the many HC techniques, including their algorithms, tracking effectiveness, modeling, mathematical equations, software, and hardware implementations, as well as the most current advancements in the field, are presented in this review study. After this investigation one can conclude that HC MPPT still has good interest and newer improvements are soon to arise.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":null,"pages":null},"PeriodicalIF":1.2040,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23600224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing the efficiency of photovoltaic (PV) solar panels is more and more the quest of many scientists because it is renewable and non-polluting energy. For this purpose, various methods and techniques are used, among which is the Maximum Power Point Tracking (MPPT) method, which has a certain interest because it does not require additional mechanical devices. One of the most used MPPT methods is the Hill Climbing (HC) method which has known a lot of evolution with time. The objective of this work is to scrutinize and present a comprehensive review of the improved Hill Climbing algorithms for tracking the Maximum Power Point (MPP) in PV systems. In-depth descriptions of the many HC techniques, including their algorithms, tracking effectiveness, modeling, mathematical equations, software, and hardware implementations, as well as the most current advancements in the field, are presented in this review study. After this investigation one can conclude that HC MPPT still has good interest and newer improvements are soon to arise.
期刊介绍:
Applied Solar Energy is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.