{"title":"Detection of Ghost Introgression Requires Exploiting Topological and Branch Length Information.","authors":"Xiao-Xu Pang, Da-Yong Zhang","doi":"10.1093/sysbio/syad077","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the study of hybridization and introgression has made significant progress, with ghost introgression-the transfer of genetic material from extinct or unsampled lineages to extant species-emerging as a key area for research. Accurately identifying ghost introgression, however, presents a challenge. To address this issue, we focused on simple cases involving 3 species with a known phylogenetic tree. Using mathematical analyses and simulations, we evaluated the performance of popular phylogenetic methods, including HyDe and PhyloNet/MPL, and the full-likelihood method, Bayesian Phylogenetics and Phylogeography (BPP), in detecting ghost introgression. Our findings suggest that heuristic approaches relying on site-pattern counts or gene-tree topologies struggle to differentiate ghost introgression from introgression between sampled non-sister species, frequently leading to incorrect identification of donor and recipient species. The full-likelihood method BPP uses multilocus sequence alignments directly-hence taking into account both gene-tree topologies and branch lengths, by contrast, is capable of detecting ghost introgression in phylogenomic datasets. We analyzed a real-world phylogenomic dataset of 14 species of Jaltomata (Solanaceae) to showcase the potential of full-likelihood methods for accurate inference of introgression.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"207-222"},"PeriodicalIF":6.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syad077","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the study of hybridization and introgression has made significant progress, with ghost introgression-the transfer of genetic material from extinct or unsampled lineages to extant species-emerging as a key area for research. Accurately identifying ghost introgression, however, presents a challenge. To address this issue, we focused on simple cases involving 3 species with a known phylogenetic tree. Using mathematical analyses and simulations, we evaluated the performance of popular phylogenetic methods, including HyDe and PhyloNet/MPL, and the full-likelihood method, Bayesian Phylogenetics and Phylogeography (BPP), in detecting ghost introgression. Our findings suggest that heuristic approaches relying on site-pattern counts or gene-tree topologies struggle to differentiate ghost introgression from introgression between sampled non-sister species, frequently leading to incorrect identification of donor and recipient species. The full-likelihood method BPP uses multilocus sequence alignments directly-hence taking into account both gene-tree topologies and branch lengths, by contrast, is capable of detecting ghost introgression in phylogenomic datasets. We analyzed a real-world phylogenomic dataset of 14 species of Jaltomata (Solanaceae) to showcase the potential of full-likelihood methods for accurate inference of introgression.
期刊介绍:
Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.