Majid Khan, Arsalan Nizamani, Luqman Shah, Imran Ullah, Muhammad Waqas, Sobia Ahsan Halim, Farid Shokry Ataya, Ahmed M Elgazzar, Gaber El-Saber Batiha, Ajmal Khan, Ahmed Al-Harrasi
{"title":"Utilizing the drug repurposing strategy on current drugs: new leads for peptic ulcers <i>via</i> biochemical and biomolecular dynamics studies.","authors":"Majid Khan, Arsalan Nizamani, Luqman Shah, Imran Ullah, Muhammad Waqas, Sobia Ahsan Halim, Farid Shokry Ataya, Ahmed M Elgazzar, Gaber El-Saber Batiha, Ajmal Khan, Ahmed Al-Harrasi","doi":"10.1080/07391102.2024.2302926","DOIUrl":null,"url":null,"abstract":"<p><p>The hyperactivity of urease enzymes plays a crucial role in the development of hepatic coma, hepatic encephalopathy, urolithiasis, gastric and peptic ulcers. Additionally, these enzymes adversely impact the soil's nitrogen efficiency for crop production. In the current study 100 known drugs were tested against Jack Bean urease and <i>Proteus mirabilis</i> urease and identified three inhibitors i.e. terbutaline (compound <b>1</b>), Ketoprofen (compound <b>2</b>) and norepinephrine bitartrate (compound <b>3</b>). As a result, these compounds showed excellent inhibition against Jack Bean urease i.e. (IC<sub>50</sub> = 2.1-11.3 µM), and <i>Proteus mirabilis</i> urease (4.8-11.9 µM). Moreover, <i>in silico</i> studies demonstrate maximum interactions of compounds in the enzyme's active site. Furthermore, intermolecular interactions between compounds and enzyme atoms were examined using STD-NMR spectrophotometry. In parallel, molecular dynamics simulation was carried out to study compounds dynamic behavior within the urease binding region. Urease remained stable during most of the simulation time and ligands were bound in the protein active pocket as observed from the Root mean square deviation (RMSD) and ligand RMSD analyses. Furthermore, these compounds display interactions with the crucial residues, including His492 and Asp633, in 100 ns simulations. In the binding energy analysis, norepinephrine bitartrate exhibited the highest binding energy (-76.32 kcal/mol) followed by Ketoprofen (-65.56 kcal/mol) and terbutaline (-62.15 kcal/mol), as compared to acetohydroxamic acid (-52.86 kcal/mol). The current findings highlight the potential of drug repurposing as an effective approach for identifying novel anti-urease compounds.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4341-4354"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2302926","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The hyperactivity of urease enzymes plays a crucial role in the development of hepatic coma, hepatic encephalopathy, urolithiasis, gastric and peptic ulcers. Additionally, these enzymes adversely impact the soil's nitrogen efficiency for crop production. In the current study 100 known drugs were tested against Jack Bean urease and Proteus mirabilis urease and identified three inhibitors i.e. terbutaline (compound 1), Ketoprofen (compound 2) and norepinephrine bitartrate (compound 3). As a result, these compounds showed excellent inhibition against Jack Bean urease i.e. (IC50 = 2.1-11.3 µM), and Proteus mirabilis urease (4.8-11.9 µM). Moreover, in silico studies demonstrate maximum interactions of compounds in the enzyme's active site. Furthermore, intermolecular interactions between compounds and enzyme atoms were examined using STD-NMR spectrophotometry. In parallel, molecular dynamics simulation was carried out to study compounds dynamic behavior within the urease binding region. Urease remained stable during most of the simulation time and ligands were bound in the protein active pocket as observed from the Root mean square deviation (RMSD) and ligand RMSD analyses. Furthermore, these compounds display interactions with the crucial residues, including His492 and Asp633, in 100 ns simulations. In the binding energy analysis, norepinephrine bitartrate exhibited the highest binding energy (-76.32 kcal/mol) followed by Ketoprofen (-65.56 kcal/mol) and terbutaline (-62.15 kcal/mol), as compared to acetohydroxamic acid (-52.86 kcal/mol). The current findings highlight the potential of drug repurposing as an effective approach for identifying novel anti-urease compounds.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.