Jianting Wen, Jian Liu, Lei Wan, Hui Jiang, Ling Xin, Yue Sun, Yanyan Fang, Xin Wang, Jie Wang
{"title":"m<sup>6</sup>A-mediated lncRNA MAPKAPK5-AS1 induces apoptosis and suppresses inflammation via regulating miR-146a-3p/SIRT1/NF-κB axis in rheumatoid arthritis.","authors":"Jianting Wen, Jian Liu, Lei Wan, Hui Jiang, Ling Xin, Yue Sun, Yanyan Fang, Xin Wang, Jie Wang","doi":"10.1080/15384101.2024.2302281","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the role of m<sup>6</sup>A-mediated lncRNA MAPKAPK5-AS1 (MK5-AS1) in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and its underlying molecular mechanism. RT-qPCR, western blot, flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA) were utilized for evaluating inflammation and apoptosis. Next, RIP, RNA pull-down, dual-luciferase reporter gene assay, and a series of rescue experiments were performed to explore the regulatory mechanisms of MK5-AS1 and its sponge-like action in RA-FLSs. The regulatory relationships between MK5-AS1 and WTAP were explored using the MeRIP-qPCR assay and RT-qPCR. Finally, the critical RNAs in the ceRNA axis were verified in the clinical cohort. MK5-AS1 was poorly expressed and miR-146a-3p was overexpressed in co-cultured RA-FLSs. MK5-AS1 overexpression could inhibit inflammatory responses and promote cell apoptosis in the co-cultured RA-FLSs. MK5-AS1 bound to miR-146a-3p to target SIRT1, thereby affecting inflammatory responses and cell apoptosis in the co-cultured RA-FLSs. SIRT1 knockdown or miR-146a-3p overexpression reversed the impacts of MK5-AS1 overexpression on co-cultured RA-FLSs inflammation and apoptosis. Moreover, WTAP was downregulated, and induced the inhibition of MK5-AS1 by promoting its RNA transcript stability. Clinically, MK5-AS1 was downregulated in RA-PBMCS and correlated with the clinical characteristics of RA. Our study elucidated that m<sup>6</sup>A-mediated MK5-AS1 sequestered miR-146a-3p to suppress SIRT1 expression in co-cultured RA-FLSs, thus providing a new insight into the treatment of rheumatoid arthritis.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2024.2302281","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the role of m6A-mediated lncRNA MAPKAPK5-AS1 (MK5-AS1) in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and its underlying molecular mechanism. RT-qPCR, western blot, flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA) were utilized for evaluating inflammation and apoptosis. Next, RIP, RNA pull-down, dual-luciferase reporter gene assay, and a series of rescue experiments were performed to explore the regulatory mechanisms of MK5-AS1 and its sponge-like action in RA-FLSs. The regulatory relationships between MK5-AS1 and WTAP were explored using the MeRIP-qPCR assay and RT-qPCR. Finally, the critical RNAs in the ceRNA axis were verified in the clinical cohort. MK5-AS1 was poorly expressed and miR-146a-3p was overexpressed in co-cultured RA-FLSs. MK5-AS1 overexpression could inhibit inflammatory responses and promote cell apoptosis in the co-cultured RA-FLSs. MK5-AS1 bound to miR-146a-3p to target SIRT1, thereby affecting inflammatory responses and cell apoptosis in the co-cultured RA-FLSs. SIRT1 knockdown or miR-146a-3p overexpression reversed the impacts of MK5-AS1 overexpression on co-cultured RA-FLSs inflammation and apoptosis. Moreover, WTAP was downregulated, and induced the inhibition of MK5-AS1 by promoting its RNA transcript stability. Clinically, MK5-AS1 was downregulated in RA-PBMCS and correlated with the clinical characteristics of RA. Our study elucidated that m6A-mediated MK5-AS1 sequestered miR-146a-3p to suppress SIRT1 expression in co-cultured RA-FLSs, thus providing a new insight into the treatment of rheumatoid arthritis.