Quantitative proteomic analyses uncover regulatory roles of Nrf2 in human endothelial cells.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Karan Naresh Amin, Palanichamy Rajaguru, Takayoshi Suzuki, Koustav Sarkar, Kumar Ganesan, Kunka Mohanram Ramkumar
{"title":"Quantitative proteomic analyses uncover regulatory roles of Nrf2 in human endothelial cells.","authors":"Karan Naresh Amin, Palanichamy Rajaguru, Takayoshi Suzuki, Koustav Sarkar, Kumar Ganesan, Kunka Mohanram Ramkumar","doi":"10.1007/s12192-023-01366-5","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional regulator, is the predominant factor in modulating oxidative stress and other cellular signaling responses. Studies from our lab and others highlighted that activation of the Nrf2 pathway by small molecules improves endothelial function by suppressing oxidative and endoplasmic reticulum (ER) stress. However, the exact mechanisms by which Nrf2 elicits these effects are unknown. In the present study, we developed CRISPR/Cas9-mediated Nrf2 knocked-out human endothelial cells, and proteomic signature was studied using LC-MS/MS. We identified 723 unique proteins, of which 361 proteins were found to be differentially regulated and further screened in the Nrf2ome online database, where we identified a highly interconnected signaling network in which 70 proteins directly interact with Nrf2. These proteins were found to regulate some key cellular and metabolic processes in the regulation actin cytoskeleton, ER stress, angiogenesis, inflammation, Hippo signaling pathway, and epidermal growth factor/fibroblast growth factor (EGF/FGF) signaling pathway. Our findings suggest the role of Nrf2 in maintaining endothelium integrity and its relationship with the crucial cellular processes which help develop novel therapeutics against endothelial dysfunction and its associated complications.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12192-023-01366-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional regulator, is the predominant factor in modulating oxidative stress and other cellular signaling responses. Studies from our lab and others highlighted that activation of the Nrf2 pathway by small molecules improves endothelial function by suppressing oxidative and endoplasmic reticulum (ER) stress. However, the exact mechanisms by which Nrf2 elicits these effects are unknown. In the present study, we developed CRISPR/Cas9-mediated Nrf2 knocked-out human endothelial cells, and proteomic signature was studied using LC-MS/MS. We identified 723 unique proteins, of which 361 proteins were found to be differentially regulated and further screened in the Nrf2ome online database, where we identified a highly interconnected signaling network in which 70 proteins directly interact with Nrf2. These proteins were found to regulate some key cellular and metabolic processes in the regulation actin cytoskeleton, ER stress, angiogenesis, inflammation, Hippo signaling pathway, and epidermal growth factor/fibroblast growth factor (EGF/FGF) signaling pathway. Our findings suggest the role of Nrf2 in maintaining endothelium integrity and its relationship with the crucial cellular processes which help develop novel therapeutics against endothelial dysfunction and its associated complications.

定量蛋白质组分析揭示了 Nrf2 在人类内皮细胞中的调控作用。
核因子红细胞 2 相关因子 2(Nrf2)是一种转录调节因子,是调节氧化应激和其他细胞信号反应的主要因子。我们实验室和其他实验室的研究强调,通过小分子激活 Nrf2 通路可抑制氧化应激和内质网(ER)应激,从而改善内皮功能。然而,Nrf2 引发这些效应的确切机制尚不清楚。在本研究中,我们开发了 CRISPR/Cas9 介导的 Nrf2 基因敲除人内皮细胞,并使用 LC-MS/MS 研究了蛋白质组特征。我们鉴定了 723 个独特的蛋白质,发现其中 361 个蛋白质受到不同程度的调控,并在 Nrf2ome 在线数据库中进行了进一步筛选。我们发现这些蛋白在调节肌动蛋白细胞骨架、ER 应激、血管生成、炎症、Hippo 信号通路和表皮生长因子/成纤维细胞生长因子(EGF/FGF)信号通路中调控一些关键的细胞和代谢过程。我们的研究结果表明了 Nrf2 在维持内皮完整性中的作用及其与关键细胞过程之间的关系,这有助于开发新的治疗内皮功能障碍及其相关并发症的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Stress & Chaperones
Cell Stress & Chaperones 生物-细胞生物学
CiteScore
7.60
自引率
2.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信