{"title":"Quantitative proteomic analyses uncover regulatory roles of Nrf2 in human endothelial cells.","authors":"Karan Naresh Amin, Palanichamy Rajaguru, Takayoshi Suzuki, Koustav Sarkar, Kumar Ganesan, Kunka Mohanram Ramkumar","doi":"10.1007/s12192-023-01366-5","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional regulator, is the predominant factor in modulating oxidative stress and other cellular signaling responses. Studies from our lab and others highlighted that activation of the Nrf2 pathway by small molecules improves endothelial function by suppressing oxidative and endoplasmic reticulum (ER) stress. However, the exact mechanisms by which Nrf2 elicits these effects are unknown. In the present study, we developed CRISPR/Cas9-mediated Nrf2 knocked-out human endothelial cells, and proteomic signature was studied using LC-MS/MS. We identified 723 unique proteins, of which 361 proteins were found to be differentially regulated and further screened in the Nrf2ome online database, where we identified a highly interconnected signaling network in which 70 proteins directly interact with Nrf2. These proteins were found to regulate some key cellular and metabolic processes in the regulation actin cytoskeleton, ER stress, angiogenesis, inflammation, Hippo signaling pathway, and epidermal growth factor/fibroblast growth factor (EGF/FGF) signaling pathway. Our findings suggest the role of Nrf2 in maintaining endothelium integrity and its relationship with the crucial cellular processes which help develop novel therapeutics against endothelial dysfunction and its associated complications.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12192-023-01366-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional regulator, is the predominant factor in modulating oxidative stress and other cellular signaling responses. Studies from our lab and others highlighted that activation of the Nrf2 pathway by small molecules improves endothelial function by suppressing oxidative and endoplasmic reticulum (ER) stress. However, the exact mechanisms by which Nrf2 elicits these effects are unknown. In the present study, we developed CRISPR/Cas9-mediated Nrf2 knocked-out human endothelial cells, and proteomic signature was studied using LC-MS/MS. We identified 723 unique proteins, of which 361 proteins were found to be differentially regulated and further screened in the Nrf2ome online database, where we identified a highly interconnected signaling network in which 70 proteins directly interact with Nrf2. These proteins were found to regulate some key cellular and metabolic processes in the regulation actin cytoskeleton, ER stress, angiogenesis, inflammation, Hippo signaling pathway, and epidermal growth factor/fibroblast growth factor (EGF/FGF) signaling pathway. Our findings suggest the role of Nrf2 in maintaining endothelium integrity and its relationship with the crucial cellular processes which help develop novel therapeutics against endothelial dysfunction and its associated complications.
期刊介绍:
Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.