{"title":"Mass Loss from the Atmosphere of the Planet WASP-193 b","authors":"I. S. Savanov","doi":"10.1007/s10511-024-09803-8","DOIUrl":null,"url":null,"abstract":"<p>Results are presented from an analysis of the manifestations of activity of the star WASP-193 of spectral class F9 with a super-neptune-type planet. The gaseous giant WASP-193 b with a mass 0.13 times Jupiter’s mass and almost one and a half times its radius. The planet has a low density ρ = 0.059±0.014 g/cm<sup>3</sup> (Kepler 51 d is an analogous object; there are few other exoplanets of this type). The equilibrium temperature of the atmosphere of the planet is high at <i>T</i><sub><i>eq</i></sub> = 1254±31 K. The results of this study of the star’s activity are used to estimate the loss of matter by the atmosphere of the planet WASP-193 b using an approximation formula corresponding to a model with limited energy. Estimates of the flux of XUV-photons <i>F</i><sub><i>XUV</i></sub> were made using an analytical relationship relating <i>F</i><sub><i>XUV</i></sub> and the parameter <span>\\({\\text{log}}{R}_{HK}{\\prime}\\)</span> for stars in classes F-M. Calculations showed that the loss of matter from the atmosphere of the exoplanet is quite high (even in the case of a low chromospheric activity of the parent star). The parameter <span>\\(\\dot{M}\\)</span> ranges from 1.8∙10<sup>10</sup> g/s to 4.3∙10<sup>11</sup> g/s, depending on the assumed level of the flux of XUV-photons (high and low activity). It is probable that the planet is losing its atmosphere intensively. WASP-193 b can be regarded as a high-priority candidate for observations using the JWST space mission (the transmission spectroscopy metric TSM for this object is about 600).</p>","PeriodicalId":479,"journal":{"name":"Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10511-024-09803-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Results are presented from an analysis of the manifestations of activity of the star WASP-193 of spectral class F9 with a super-neptune-type planet. The gaseous giant WASP-193 b with a mass 0.13 times Jupiter’s mass and almost one and a half times its radius. The planet has a low density ρ = 0.059±0.014 g/cm3 (Kepler 51 d is an analogous object; there are few other exoplanets of this type). The equilibrium temperature of the atmosphere of the planet is high at Teq = 1254±31 K. The results of this study of the star’s activity are used to estimate the loss of matter by the atmosphere of the planet WASP-193 b using an approximation formula corresponding to a model with limited energy. Estimates of the flux of XUV-photons FXUV were made using an analytical relationship relating FXUV and the parameter \({\text{log}}{R}_{HK}{\prime}\) for stars in classes F-M. Calculations showed that the loss of matter from the atmosphere of the exoplanet is quite high (even in the case of a low chromospheric activity of the parent star). The parameter \(\dot{M}\) ranges from 1.8∙1010 g/s to 4.3∙1011 g/s, depending on the assumed level of the flux of XUV-photons (high and low activity). It is probable that the planet is losing its atmosphere intensively. WASP-193 b can be regarded as a high-priority candidate for observations using the JWST space mission (the transmission spectroscopy metric TSM for this object is about 600).
期刊介绍:
Astrophysics (Ap) is a peer-reviewed scientific journal which publishes research in theoretical and observational astrophysics. Founded by V.A.Ambartsumian in 1965 Astrophysics is one of the international astronomy journals. The journal covers space astrophysics, stellar and galactic evolution, solar physics, stellar and planetary atmospheres, interstellar matter. Additional subjects include chemical composition and internal structure of stars, quasars and pulsars, developments in modern cosmology and radiative transfer.