SIR model with social gatherings

Pub Date : 2024-01-15 DOI:10.1017/jpr.2023.65
Roberto Cortez
{"title":"SIR model with social gatherings","authors":"Roberto Cortez","doi":"10.1017/jpr.2023.65","DOIUrl":null,"url":null,"abstract":"<p>We introduce an extension to Kermack and McKendrick’s classic susceptible–infected–recovered (SIR) model in epidemiology, whose underlying mechanism of infection consists of individuals attending randomly generated social gatherings. This gives rise to a system of ordinary differential equations (ODEs) where the force of the infection term depends non-linearly on the proportion of infected individuals. Some specific instances yield models already studied in the literature, to which the present work provides a probabilistic foundation. The basic reproduction number is seen to depend quadratically on the average size of the gatherings, which may be helpful in understanding how restrictions on social gatherings affect the spread of the disease. We rigorously justify our model by showing that the system of ODEs is the mean-field limit of the jump Markov process corresponding to the evolution of the disease in a finite population.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an extension to Kermack and McKendrick’s classic susceptible–infected–recovered (SIR) model in epidemiology, whose underlying mechanism of infection consists of individuals attending randomly generated social gatherings. This gives rise to a system of ordinary differential equations (ODEs) where the force of the infection term depends non-linearly on the proportion of infected individuals. Some specific instances yield models already studied in the literature, to which the present work provides a probabilistic foundation. The basic reproduction number is seen to depend quadratically on the average size of the gatherings, which may be helpful in understanding how restrictions on social gatherings affect the spread of the disease. We rigorously justify our model by showing that the system of ODEs is the mean-field limit of the jump Markov process corresponding to the evolution of the disease in a finite population.

分享
查看原文
有社交聚会的 SIR 模式
我们对 Kermack 和 McKendrick 在流行病学中提出的经典易感-感染-康复(SIR)模型进行了扩展,其基本感染机制包括个人参加随机产生的社交聚会。这就产生了一个常微分方程(ODE)系统,其中感染项的作用力非线性地取决于受感染个体的比例。一些具体实例产生了文献中已研究过的模型,本研究为这些模型提供了概率基础。基本繁殖数量与聚会的平均规模成二次函数关系,这可能有助于理解对社交聚会的限制如何影响疾病的传播。我们通过证明 ODEs 系统是与疾病在有限种群中的演变相对应的跃迁马尔可夫过程的均场极限,严格论证了我们的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信