Privacy-preserving data publishing: an information-driven distributed genetic algorithm

Yong-Feng Ge, Hua Wang, Jinli Cao, Yanchun Zhang, Xiaohong Jiang
{"title":"Privacy-preserving data publishing: an information-driven distributed genetic algorithm","authors":"Yong-Feng Ge, Hua Wang, Jinli Cao, Yanchun Zhang, Xiaohong Jiang","doi":"10.1007/s11280-024-01241-y","DOIUrl":null,"url":null,"abstract":"<p>The privacy-preserving data publishing (PPDP) problem has gained substantial attention from research communities, industries, and governments due to the increasing requirements for data publishing and concerns about data privacy. However, achieving a balance between preserving privacy and maintaining data quality remains a challenging task in PPDP. This paper presents an information-driven distributed genetic algorithm (ID-DGA) that aims to achieve optimal anonymization through attribute generalization and record suppression. The proposed algorithm incorporates various components, including an information-driven crossover operator, an information-driven mutation operator, an information-driven improvement operator, and a two-dimensional selection operator. Furthermore, a distributed population model is utilized to improve population diversity while reducing the running time. Experimental results confirm the superiority of ID-DGA in terms of solution accuracy, convergence speed, and the effectiveness of all the proposed components.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01241-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The privacy-preserving data publishing (PPDP) problem has gained substantial attention from research communities, industries, and governments due to the increasing requirements for data publishing and concerns about data privacy. However, achieving a balance between preserving privacy and maintaining data quality remains a challenging task in PPDP. This paper presents an information-driven distributed genetic algorithm (ID-DGA) that aims to achieve optimal anonymization through attribute generalization and record suppression. The proposed algorithm incorporates various components, including an information-driven crossover operator, an information-driven mutation operator, an information-driven improvement operator, and a two-dimensional selection operator. Furthermore, a distributed population model is utilized to improve population diversity while reducing the running time. Experimental results confirm the superiority of ID-DGA in terms of solution accuracy, convergence speed, and the effectiveness of all the proposed components.

Abstract Image

保护隐私的数据发布:信息驱动的分布式遗传算法
由于对数据发布的要求越来越高,以及对数据隐私的担忧,隐私保护数据发布(PPDP)问题得到了研究界、行业和政府的广泛关注。然而,如何在保护隐私和保持数据质量之间取得平衡,仍然是 PPDP 中一项具有挑战性的任务。本文提出了一种信息驱动分布式遗传算法(ID-DGA),旨在通过属性泛化和记录抑制实现最佳匿名化。该算法包含多个组件,包括信息驱动的交叉算子、信息驱动的突变算子、信息驱动的改进算子和二维选择算子。此外,还利用分布式种群模型来提高种群多样性,同时减少运行时间。实验结果证实,ID-DGA 在求解精度、收敛速度以及所有建议组件的有效性方面都具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信