Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lv, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di
{"title":"GWAS analysis reveals candidate genes associated with dense tolerance (ear leaf structure) in maize (Zea mays L.)","authors":"Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lv, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di","doi":"10.1016/j.jia.2024.01.023","DOIUrl":null,"url":null,"abstract":"<p>Planting density is a major limiting factor for maize yield, and breeding for density tolerance breeding has become an urgent issue. The leaf structure of the maize ear leaf is the main factor that restricts planting density and yield composition. In this study, a natural population of 201 maize inbred lines was used for genome-wide association analysis, which identified nine SNPs on chromosomes 2, 5, 8, 9, and 10 that were significantly associated with ear leaf type structure. Further verification through qRT-PCR confirmed the association of five candidate genes with these SNPs, with the <em>Zm00001d008651</em> gene showing significant differential expression in compact and flat maize inbred lines. Enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) suggested that this gene is involved in the glycolysis process. The analysis of the basic properties of this gene revealed that it encodes a stable, basic protein consisting of 593 amino acids with some hydrophobic ability. The promoter region contains stress and hormone (ABA) related elements. The mutant of this gene increased the uppermost ear leaf angle (eLA) and the first leaf below the uppermost ear (bLA) by 4.96° and 0.97° compared with normal inbred lines. Overall, this research sheds light on the regulatory mechanism of ear and leaf structure that influence density tolerance and provides solid foundational work for the development of new varieties.</p>","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"11 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.01.023","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Planting density is a major limiting factor for maize yield, and breeding for density tolerance breeding has become an urgent issue. The leaf structure of the maize ear leaf is the main factor that restricts planting density and yield composition. In this study, a natural population of 201 maize inbred lines was used for genome-wide association analysis, which identified nine SNPs on chromosomes 2, 5, 8, 9, and 10 that were significantly associated with ear leaf type structure. Further verification through qRT-PCR confirmed the association of five candidate genes with these SNPs, with the Zm00001d008651 gene showing significant differential expression in compact and flat maize inbred lines. Enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) suggested that this gene is involved in the glycolysis process. The analysis of the basic properties of this gene revealed that it encodes a stable, basic protein consisting of 593 amino acids with some hydrophobic ability. The promoter region contains stress and hormone (ABA) related elements. The mutant of this gene increased the uppermost ear leaf angle (eLA) and the first leaf below the uppermost ear (bLA) by 4.96° and 0.97° compared with normal inbred lines. Overall, this research sheds light on the regulatory mechanism of ear and leaf structure that influence density tolerance and provides solid foundational work for the development of new varieties.
期刊介绍:
Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.