Real-world Application of Racial and Ethnic Imputation and Cohort Balancing Techniques to Deliver Equitable Clinical Trial Recruitment.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Kelly J Craig, Yanrong Jerry Ji, Yuxin Chloe Zhang, Alexandra Berk, Amanda Zaleski, Omar Abdelsamad, Henriette Coetzer, Dorothea J Verbrugge, Guangying Hua
{"title":"Real-world Application of Racial and Ethnic Imputation and Cohort Balancing Techniques to Deliver Equitable Clinical Trial Recruitment.","authors":"Kelly J Craig, Yanrong Jerry Ji, Yuxin Chloe Zhang, Alexandra Berk, Amanda Zaleski, Omar Abdelsamad, Henriette Coetzer, Dorothea J Verbrugge, Guangying Hua","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing diversity and inclusion in clinical trial recruitment, especially for historically marginalized populations including Black, Indigenous, and People of Color individuals, is essential. This practice ensures that generalizable trial results are achieved to deliver safe, effective, and equitable health and healthcare. However, recruitment is limited by two inextricably linked barriers - the inability to recruit and retain enough trial participants, and the lack of diversity amongst trial populations whereby racial and ethnic groups are underrepresented when compared to national composition. To overcome these barriers, this study describes and evaluates a framework that combines 1) probabilistic and machine learning models to accurately impute missing race and ethnicity fields in real-world data including medical and pharmacy claims for the identification of eligible trial participants, 2) randomized controlled trial experimentation to deliver an optimal patient outreach strategy, and 3) stratified sampling techniques to effectively balance cohorts to continuously improve engagement and recruitment metrics.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"319-328"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing diversity and inclusion in clinical trial recruitment, especially for historically marginalized populations including Black, Indigenous, and People of Color individuals, is essential. This practice ensures that generalizable trial results are achieved to deliver safe, effective, and equitable health and healthcare. However, recruitment is limited by two inextricably linked barriers - the inability to recruit and retain enough trial participants, and the lack of diversity amongst trial populations whereby racial and ethnic groups are underrepresented when compared to national composition. To overcome these barriers, this study describes and evaluates a framework that combines 1) probabilistic and machine learning models to accurately impute missing race and ethnicity fields in real-world data including medical and pharmacy claims for the identification of eligible trial participants, 2) randomized controlled trial experimentation to deliver an optimal patient outreach strategy, and 3) stratified sampling techniques to effectively balance cohorts to continuously improve engagement and recruitment metrics.

在现实世界中应用种族和民族推算及队列平衡技术,实现公平的临床试验招募。
加强临床试验招募的多样性和包容性至关重要,尤其是对于历史上被边缘化的人群,包括黑人、原住民和有色人种。这种做法可确保获得可推广的试验结果,从而提供安全、有效和公平的健康和医疗保健服务。然而,招募工作受到了两个密不可分的障碍的限制,一是无法招募和留住足够的试验参与者,二是试验人群缺乏多样性,与全国人口构成相比,种族和民族群体的代表性不足。为了克服这些障碍,本研究描述并评估了一个框架,该框架结合了:1)概率模型和机器学习模型,以准确估算真实世界数据(包括医疗和药房报销单)中缺失的种族和民族字段,从而识别符合条件的试验参与者;2)随机对照试验实验,以提供最佳的患者外联策略;3)分层抽样技术,以有效平衡队列,从而不断提高参与度和招募指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信