Probabilistic Prediction of Laboratory Test Information Yield.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Yixing Jiang, Andrew H Lee, Xiaoyuan Ni, Conor K Corbin, Jeremy A Irvin, Andrew Y Ng, Jonathan H Chen
{"title":"Probabilistic Prediction of Laboratory Test Information Yield.","authors":"Yixing Jiang, Andrew H Lee, Xiaoyuan Ni, Conor K Corbin, Jeremy A Irvin, Andrew Y Ng, Jonathan H Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Low-yield repetitive laboratory diagnostics burden patients and inflate cost of care. In this study, we assess whether stability in repeated laboratory diagnostic measurements is predictable with uncertainty estimates using electronic health record data available before the diagnostic is ordered. We use probabilistic regression to predict a distribution of plausible values, allowing use-time customization for various definitions of \"stability\" given dynamic ranges and clinical scenarios. After converting distributions into \"stability\" scores, the models achieve a sensitivity of 29% for white blood cells, 60% for hemoglobin, 100% for platelets, 54% for potassium, 99% for albumin and 35% for creatinine for predicting stability at 90% precision, suggesting those fractions of repetitive tests could be reduced with low risk of missing important changes. The findings demonstrate the feasibility of using electronic health record data to identify low-yield repetitive tests and offer personalized guidance for better usage of testing while ensuring high quality care.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1007-1016"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-yield repetitive laboratory diagnostics burden patients and inflate cost of care. In this study, we assess whether stability in repeated laboratory diagnostic measurements is predictable with uncertainty estimates using electronic health record data available before the diagnostic is ordered. We use probabilistic regression to predict a distribution of plausible values, allowing use-time customization for various definitions of "stability" given dynamic ranges and clinical scenarios. After converting distributions into "stability" scores, the models achieve a sensitivity of 29% for white blood cells, 60% for hemoglobin, 100% for platelets, 54% for potassium, 99% for albumin and 35% for creatinine for predicting stability at 90% precision, suggesting those fractions of repetitive tests could be reduced with low risk of missing important changes. The findings demonstrate the feasibility of using electronic health record data to identify low-yield repetitive tests and offer personalized guidance for better usage of testing while ensuring high quality care.

实验室测试信息产量的概率预测。
低收益的重复实验室诊断会给患者造成负担,并增加医疗成本。在本研究中,我们利用诊断前的电子健康记录数据,评估重复实验室诊断测量的稳定性是否可通过不确定性估计值进行预测。我们使用概率回归法预测可信值的分布,允许根据动态范围和临床情况对各种 "稳定性 "定义进行使用时间定制。在将分布转换为 "稳定性 "评分后,模型在 90% 的精确度下预测稳定性的灵敏度分别为:白细胞 29%、血红蛋白 60%、血小板 100%、血钾 54%、白蛋白 99%、肌酐 35%,这表明可以减少重复检查的次数,而遗漏重要变化的风险很低。研究结果证明了利用电子健康记录数据识别低收益重复检验的可行性,并为更好地使用检验提供了个性化指导,同时确保了高质量的医疗服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信