Mapping Clinical Documents to the Logical Observation Identifiers, Names and Codes (LOINC) Document Ontology using Electronic Health Record Systems Structured Metadata.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Huzaifa Khan, Abu Saleh Mohammad Mosa, Vyshnavi Paka, Md Kamruz Zaman Rana, Vasanthi Mandhadi, Soliman Islam, Hua Xu, James C McClay, Sraboni Sarker, Praveen Rao, Lemuel R Waitman
{"title":"Mapping Clinical Documents to the <i>Logical Observation Identifiers, Names and Codes</i> (LOINC) Document Ontology using Electronic Health Record Systems Structured Metadata.","authors":"Huzaifa Khan, Abu Saleh Mohammad Mosa, Vyshnavi Paka, Md Kamruz Zaman Rana, Vasanthi Mandhadi, Soliman Islam, Hua Xu, James C McClay, Sraboni Sarker, Praveen Rao, Lemuel R Waitman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>As Electronic Health Record (EHR) systems increase in usage, organizations struggle to maintain and categorize clinical documentation so it can be used for clinical care and research. While prior research has often employed natural language processing techniques to categorize free text documents, there are shortcomings relative to computational scalability and the lack of key metadata within notes' text. This study presents a framework that can allow institutions to map their notes to the LOINC document ontology using a Bag of Words approach. After preliminary manual value- set mapping, an automated pipeline that leverages key dimensions of metadata from structured EHR fields aligns the notes with the dimensions of the document ontology. This framework resulted in 73.4% coverage of EHR documents, while also mapping 132 million notes in less than 2 hours; an order of magnitude more efficient than NLP based methods.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1017-1026"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As Electronic Health Record (EHR) systems increase in usage, organizations struggle to maintain and categorize clinical documentation so it can be used for clinical care and research. While prior research has often employed natural language processing techniques to categorize free text documents, there are shortcomings relative to computational scalability and the lack of key metadata within notes' text. This study presents a framework that can allow institutions to map their notes to the LOINC document ontology using a Bag of Words approach. After preliminary manual value- set mapping, an automated pipeline that leverages key dimensions of metadata from structured EHR fields aligns the notes with the dimensions of the document ontology. This framework resulted in 73.4% coverage of EHR documents, while also mapping 132 million notes in less than 2 hours; an order of magnitude more efficient than NLP based methods.

利用电子健康记录系统结构元数据将临床文档映射到逻辑观察标识符、名称和代码(LOINC)文档本体。
随着电子健康记录(EHR)系统使用率的提高,各机构都在努力维护和分类临床文档,以便将其用于临床护理和研究。虽然之前的研究通常采用自然语言处理技术对自由文本文档进行分类,但在计算可扩展性和缺乏笔记文本中的关键元数据方面存在不足。本研究提出了一个框架,允许各机构使用 "词袋"(Bag of Words)方法将其笔记映射到 LOINC 文档本体。在经过初步的人工值集映射之后,一个利用结构化电子病历字段中关键元数据维度的自动化管道将笔记与文档本体的维度进行了对齐。这一框架实现了电子病历文档 73.4% 的覆盖率,同时还在不到 2 小时的时间内映射了 1.32 亿份笔记;与基于 NLP 的方法相比,效率要高出一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信