DiffusionCT: Latent Diffusion Model for CT Image Standardization.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Md Selim, Jie Zhang, Michael A Brooks, Ge Wang, Jin Chen
{"title":"DiffusionCT: Latent Diffusion Model for CT Image Standardization.","authors":"Md Selim, Jie Zhang, Michael A Brooks, Ge Wang, Jin Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography (CT) is one of the modalities for effective lung cancer screening, diagnosis, treatment, and prognosis. The features extracted from CT images are now used to quantify spatial and temporal variations in tumors. However, CT images obtained from various scanners with customized acquisition protocols may introduce considerable variations in texture features, even for the same patient. This presents a fundamental challenge to downstream studies that require consistent and reliable feature analysis. Existing CT image harmonization models rely on GAN-based supervised or semi-supervised learning, with limited performance. This work addresses the issue of CT image harmonization using a new diffusion-based model, named DiffusionCT, to standardize CT images acquired from different vendors and protocols. DiffusionCT operates in the latent space by mapping a latent non-standard distribution into a standard one. DiffusionCT incorporates a U-Net-based encoder-decoder, augmented by a diffusion model integrated into the bottleneck part. The model is designed in two training phases. The encoder-decoder is first trained, without embedding the diffusion model, to learn the latent representation of the input data. The latent diffusion model is then trained in the next training phase while fixing the encoder-decoder. Finally, the decoder synthesizes a standardized image with the transformed latent representation. The experimental results demonstrate a significant improvement in the performance of the standardization task using DiffusionCT.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"624-633"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computed tomography (CT) is one of the modalities for effective lung cancer screening, diagnosis, treatment, and prognosis. The features extracted from CT images are now used to quantify spatial and temporal variations in tumors. However, CT images obtained from various scanners with customized acquisition protocols may introduce considerable variations in texture features, even for the same patient. This presents a fundamental challenge to downstream studies that require consistent and reliable feature analysis. Existing CT image harmonization models rely on GAN-based supervised or semi-supervised learning, with limited performance. This work addresses the issue of CT image harmonization using a new diffusion-based model, named DiffusionCT, to standardize CT images acquired from different vendors and protocols. DiffusionCT operates in the latent space by mapping a latent non-standard distribution into a standard one. DiffusionCT incorporates a U-Net-based encoder-decoder, augmented by a diffusion model integrated into the bottleneck part. The model is designed in two training phases. The encoder-decoder is first trained, without embedding the diffusion model, to learn the latent representation of the input data. The latent diffusion model is then trained in the next training phase while fixing the encoder-decoder. Finally, the decoder synthesizes a standardized image with the transformed latent representation. The experimental results demonstrate a significant improvement in the performance of the standardization task using DiffusionCT.

DiffusionCT:用于 CT 图像标准化的潜在扩散模型。
计算机断层扫描(CT)是有效筛查、诊断、治疗和预后肺癌的方法之一。目前,从 CT 图像中提取的特征被用于量化肿瘤的空间和时间变化。然而,从不同的扫描仪和定制的采集协议中获得的 CT 图像可能会在纹理特征上产生相当大的差异,即使是同一个病人也不例外。这对需要一致、可靠的特征分析的下游研究提出了根本性的挑战。现有的 CT 图像协调模型依赖于基于 GAN 的监督或半监督学习,但性能有限。这项研究利用一种新的基于扩散的模型(名为 DiffusionCT)来解决 CT 图像协调问题,以标准化从不同供应商和协议获取的 CT 图像。DiffusionCT 通过将非标准的潜在分布映射到标准分布,在潜在空间中进行操作。DiffusionCT 包含一个基于 U-Net 的编码器-解码器,并在瓶颈部分集成了一个扩散模型。该模型的设计分为两个训练阶段。首先在不嵌入扩散模型的情况下训练编码器-解码器,以学习输入数据的潜在表示。然后在下一个训练阶段训练潜在扩散模型,同时固定编码器-解码器。最后,解码器用转换后的潜在表示合成标准化图像。实验结果表明,使用 DiffusionCT 可以显著提高标准化任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信