Shenghuan Sun, Travis Zack, Christopher Y K Williams, Madhumita Sushil, Atul J Butte
{"title":"Topic modeling on clinical social work notes for exploring social determinants of health factors.","authors":"Shenghuan Sun, Travis Zack, Christopher Y K Williams, Madhumita Sushil, Atul J Butte","doi":"10.1093/jamiaopen/ooad112","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Existing research on social determinants of health (SDoH) predominantly focuses on physician notes and structured data within electronic medical records. This study posits that social work notes are an untapped, potentially rich source for SDoH information. We hypothesize that clinical notes recorded by social workers, whose role is to ameliorate social and economic factors, might provide a complementary information source of data on SDoH compared to physician notes, which primarily concentrate on medical diagnoses and treatments. We aimed to use word frequency analysis and topic modeling to identify prevalent terms and robust topics of discussion within a large cohort of social work notes including both outpatient and in-patient consultations.</p><p><strong>Materials and methods: </strong>We retrieved a diverse, deidentified corpus of 0.95 million clinical social work notes from 181 644 patients at the University of California, San Francisco. We conducted word frequency analysis related to ICD-10 chapters to identify prevalent terms within the notes. We then applied Latent Dirichlet Allocation (LDA) topic modeling analysis to characterize this corpus and identify potential topics of discussion, which was further stratified by note types and disease groups.</p><p><strong>Results: </strong>Word frequency analysis primarily identified medical-related terms associated with specific ICD10 chapters, though it also detected some subtle SDoH terms. In contrast, the LDA topic modeling analysis extracted 11 topics explicitly related to social determinants of health risk factors, such as financial status, abuse history, social support, risk of death, and mental health. The topic modeling approach effectively demonstrated variations between different types of social work notes and across patients with different types of diseases or conditions.</p><p><strong>Discussion: </strong>Our findings highlight LDA topic modeling's effectiveness in extracting SDoH-related themes and capturing variations in social work notes, demonstrating its potential for informing targeted interventions for at-risk populations.</p><p><strong>Conclusion: </strong>Social work notes offer a wealth of unique and valuable information on an individual's SDoH. These notes present consistent and meaningful topics of discussion that can be effectively analyzed and utilized to improve patient care and inform targeted interventions for at-risk populations.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Existing research on social determinants of health (SDoH) predominantly focuses on physician notes and structured data within electronic medical records. This study posits that social work notes are an untapped, potentially rich source for SDoH information. We hypothesize that clinical notes recorded by social workers, whose role is to ameliorate social and economic factors, might provide a complementary information source of data on SDoH compared to physician notes, which primarily concentrate on medical diagnoses and treatments. We aimed to use word frequency analysis and topic modeling to identify prevalent terms and robust topics of discussion within a large cohort of social work notes including both outpatient and in-patient consultations.
Materials and methods: We retrieved a diverse, deidentified corpus of 0.95 million clinical social work notes from 181 644 patients at the University of California, San Francisco. We conducted word frequency analysis related to ICD-10 chapters to identify prevalent terms within the notes. We then applied Latent Dirichlet Allocation (LDA) topic modeling analysis to characterize this corpus and identify potential topics of discussion, which was further stratified by note types and disease groups.
Results: Word frequency analysis primarily identified medical-related terms associated with specific ICD10 chapters, though it also detected some subtle SDoH terms. In contrast, the LDA topic modeling analysis extracted 11 topics explicitly related to social determinants of health risk factors, such as financial status, abuse history, social support, risk of death, and mental health. The topic modeling approach effectively demonstrated variations between different types of social work notes and across patients with different types of diseases or conditions.
Discussion: Our findings highlight LDA topic modeling's effectiveness in extracting SDoH-related themes and capturing variations in social work notes, demonstrating its potential for informing targeted interventions for at-risk populations.
Conclusion: Social work notes offer a wealth of unique and valuable information on an individual's SDoH. These notes present consistent and meaningful topics of discussion that can be effectively analyzed and utilized to improve patient care and inform targeted interventions for at-risk populations.