{"title":"The apoptotic and anti-proliferative effect of Lysyl oxidase propeptide in Y79 human retinoblastoma cells.","authors":"Nareshkumar Ragavachetty Nagaraj, Sulochana Konerirajapuram Natarajan, Coral Karunakaran","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Retinoblastoma (RB) caused by the mutation of the <i>RB1</i> gene is one of the most common ocular malignancies in children The propeptide region of lysyl oxidase (LOX), the enzyme involved in the cross-linking of collagen and elastin, has been identified to be anti-tumorigenic in various cancers. However, this role of lysyl oxidase propeptide (LOX-PP) in RB is still elusive. This study aims to identify the anti-tumorigenic effect of LOX-PP in human Y79 RB cells.</p><p><strong>Methods: </strong>LOX-PP was overexpressed in Y79 RB cells, and differential gene expression was assessed by microarray followed by pathway analysis using transcriptome analysis console (TAC) software. Additionally, cell proliferation was studied by PrestoBlue assay, and DNA content was evaluated by cell cycle and apoptosis assays. The pro-apoptotic and anti-proliferative mechanisms induced by the overexpression of/exogenously added LOX-PP was evaluated by western blotting and real-time PCR.</p><p><strong>Results: </strong>The expression of the <i>LOX-PP</i> transcript was significantly decreased in Y79 RB cells compared to human retinal endothelial cells. Gene expression analysis in LOX-PP overexpressed Y79 RB cells showed deregulation of pathways involved in apoptosis, cell cycle, focal adhesion-PI3K-AKT signaling, and DNA repair mechanisms. Interestingly, LOX-PP overexpressed Y79 RB cells showed significantly increased apoptosis, decreased proliferation, and cell cycle arrest at S-phase with a concordant reduction of proliferative cell nuclear antigen and Cyclin D1 protein expressions. Moreover, pAKT (S473) was significantly downregulated in Y79 RB cells, which decreased NFκB leading to significantly reduced BCL2 expression.</p><p><strong>Conclusions: </strong>Our results demonstrate the anti-tumorigenic effect of LOX-PP in Y79 RB cells by inducing apoptosis and decreasing proliferation. This effect was mediated by the downregulation of AKT signaling. These results suggest that LOX-PP can be explored as a therapeutic molecule in RB.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"29 ","pages":"125-139"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Retinoblastoma (RB) caused by the mutation of the RB1 gene is one of the most common ocular malignancies in children The propeptide region of lysyl oxidase (LOX), the enzyme involved in the cross-linking of collagen and elastin, has been identified to be anti-tumorigenic in various cancers. However, this role of lysyl oxidase propeptide (LOX-PP) in RB is still elusive. This study aims to identify the anti-tumorigenic effect of LOX-PP in human Y79 RB cells.
Methods: LOX-PP was overexpressed in Y79 RB cells, and differential gene expression was assessed by microarray followed by pathway analysis using transcriptome analysis console (TAC) software. Additionally, cell proliferation was studied by PrestoBlue assay, and DNA content was evaluated by cell cycle and apoptosis assays. The pro-apoptotic and anti-proliferative mechanisms induced by the overexpression of/exogenously added LOX-PP was evaluated by western blotting and real-time PCR.
Results: The expression of the LOX-PP transcript was significantly decreased in Y79 RB cells compared to human retinal endothelial cells. Gene expression analysis in LOX-PP overexpressed Y79 RB cells showed deregulation of pathways involved in apoptosis, cell cycle, focal adhesion-PI3K-AKT signaling, and DNA repair mechanisms. Interestingly, LOX-PP overexpressed Y79 RB cells showed significantly increased apoptosis, decreased proliferation, and cell cycle arrest at S-phase with a concordant reduction of proliferative cell nuclear antigen and Cyclin D1 protein expressions. Moreover, pAKT (S473) was significantly downregulated in Y79 RB cells, which decreased NFκB leading to significantly reduced BCL2 expression.
Conclusions: Our results demonstrate the anti-tumorigenic effect of LOX-PP in Y79 RB cells by inducing apoptosis and decreasing proliferation. This effect was mediated by the downregulation of AKT signaling. These results suggest that LOX-PP can be explored as a therapeutic molecule in RB.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.