GPR143 mutations in an X-linked infantile nystagmus syndrome cohort in Southeast China.
IF 1.8 3区 医学Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular VisionPub Date : 2023-11-01eCollection Date: 2023-01-01
Jingling Xu, Yihan Zheng, Lulu Cheng, Huihui Sun, Xinping Yu, Feng Gu, E Song
{"title":"<i>GPR143</i> mutations in an X-linked infantile nystagmus syndrome cohort in Southeast China.","authors":"Jingling Xu, Yihan Zheng, Lulu Cheng, Huihui Sun, Xinping Yu, Feng Gu, E Song","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Infantile nystagmus syndrome (INS), or congenital nystagmus (CN), refers to a group of ocular motor disorders characterized by rapid to-and-fro oscillations of the eyes. <i>GPR143</i> is the causative gene of ocular albinism type 1 (OA1), which is a special type of INS that manifests as reduced vision, nystagmus, and iris and fundus hypopigmentation. Here, we explored the genetic spectrum of INS and the genotype-phenotype correlation.</p><p><strong>Methods: </strong>A total of 98 families with INS from Southeast China were recruited for this study. A sample from each participant was subjected to PCR-based DNA direct sequencing of <i>GPR143</i>. Varied bioinformatics analysis was subsequently used in a mutation assessment. All participants received detailed ophthalmic examinations.</p><p><strong>Results: </strong>Genetic analysis identified 11 <i>GPR143</i> mutations in 11.2% (11/98) of the X-linked INS families. These included seven novel mutations (c.899 C>T, c.886-2 A>G, c.1A>G, c.633_643del CCTGTTCCAAA, c.162_198delCGCGGGCCCCGGGTCCCCCGCGACGTCCCCGCCGGCC, c.628C>A, and c.178_179insGGGTCCC) and four known mutations. Patients who carried a <i>GPR143</i> mutation were found to present a typical or atypical phenotype of OA1. All patients with <i>GPR143</i> mutations manifested foveal hypoplasia; thus, about 45.8% (11/24) of the families with total X-linked INS exhibited foveal hypoplasia.</p><p><strong>Conclusions: </strong>We discovered seven novel mutations and four previously reported mutations of <i>GPR143</i> in a cohort of families with X-linked INS and enlarged the Chinese genetic spectrum of INS. These findings offer new insights for developing genetic screening strategies and shed light on the importance of conducting genetic analysis in confirming the clinical diagnosis in unresolved patients and atypical phenotypes.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"29 ","pages":"234-244"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Infantile nystagmus syndrome (INS), or congenital nystagmus (CN), refers to a group of ocular motor disorders characterized by rapid to-and-fro oscillations of the eyes. GPR143 is the causative gene of ocular albinism type 1 (OA1), which is a special type of INS that manifests as reduced vision, nystagmus, and iris and fundus hypopigmentation. Here, we explored the genetic spectrum of INS and the genotype-phenotype correlation.
Methods: A total of 98 families with INS from Southeast China were recruited for this study. A sample from each participant was subjected to PCR-based DNA direct sequencing of GPR143. Varied bioinformatics analysis was subsequently used in a mutation assessment. All participants received detailed ophthalmic examinations.
Results: Genetic analysis identified 11 GPR143 mutations in 11.2% (11/98) of the X-linked INS families. These included seven novel mutations (c.899 C>T, c.886-2 A>G, c.1A>G, c.633_643del CCTGTTCCAAA, c.162_198delCGCGGGCCCCGGGTCCCCCGCGACGTCCCCGCCGGCC, c.628C>A, and c.178_179insGGGTCCC) and four known mutations. Patients who carried a GPR143 mutation were found to present a typical or atypical phenotype of OA1. All patients with GPR143 mutations manifested foveal hypoplasia; thus, about 45.8% (11/24) of the families with total X-linked INS exhibited foveal hypoplasia.
Conclusions: We discovered seven novel mutations and four previously reported mutations of GPR143 in a cohort of families with X-linked INS and enlarged the Chinese genetic spectrum of INS. These findings offer new insights for developing genetic screening strategies and shed light on the importance of conducting genetic analysis in confirming the clinical diagnosis in unresolved patients and atypical phenotypes.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.