{"title":"Hetero-blast from a structural reactive material cylinder under explosive loading","authors":"Fan Zhang, Akio Yoshinaka, Robert C. Ripley","doi":"10.1002/prep.202300260","DOIUrl":null,"url":null,"abstract":"A structural reactive material (SRM) cylinder is considered here as a limiting case of a dense metallic energetic system in which a mixture of metal particles is consolidated to the theoretical maximum density excluding porosity, to possess both high energy density and mechanical strength. Dynamic fragmentation and free-field explosion of a 103 mm inner diameter SRM cylinder charge is experimentally studied, with a wall thickness varying in a range of metal-to-explosive mass ratio <i>M/C</i>=1.3 to 4.0. Under explosive loading, the SRM cylinder produces a designated fragment size distribution divided into two groups: fine fragments with sizes on the order of 10<sup>2</sup> μm and below, and coarse fragments with sizes on the order ranging between 10<sup>0</sup>-10<sup>1</sup> mm. Prompt detonation shock-induced reaction (DSIR) of the expanding cloud of high-concentration fine fragments supplements the energy to enhance the primary blast as it propagates, while the coarse fragments form a high-speed, high-concentration metal momentum flux crossing the fireball and blast front to contribute to the total impulse loading to a nearby structure. Rapid impact-induced reaction (IIR) of the secondary fragments from high-speed coarse SRM fragments further enhances the reflected blast loading or generates a high interior explosion pressure as fragments perforate into the structure. The above distinctive characteristics of a unique hetero-blast are coupled effectively in the near-field range.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300260","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A structural reactive material (SRM) cylinder is considered here as a limiting case of a dense metallic energetic system in which a mixture of metal particles is consolidated to the theoretical maximum density excluding porosity, to possess both high energy density and mechanical strength. Dynamic fragmentation and free-field explosion of a 103 mm inner diameter SRM cylinder charge is experimentally studied, with a wall thickness varying in a range of metal-to-explosive mass ratio M/C=1.3 to 4.0. Under explosive loading, the SRM cylinder produces a designated fragment size distribution divided into two groups: fine fragments with sizes on the order of 102 μm and below, and coarse fragments with sizes on the order ranging between 100-101 mm. Prompt detonation shock-induced reaction (DSIR) of the expanding cloud of high-concentration fine fragments supplements the energy to enhance the primary blast as it propagates, while the coarse fragments form a high-speed, high-concentration metal momentum flux crossing the fireball and blast front to contribute to the total impulse loading to a nearby structure. Rapid impact-induced reaction (IIR) of the secondary fragments from high-speed coarse SRM fragments further enhances the reflected blast loading or generates a high interior explosion pressure as fragments perforate into the structure. The above distinctive characteristics of a unique hetero-blast are coupled effectively in the near-field range.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.