{"title":"Lifshitz Transitions and Angular Conductivity Diagrams in Metals with Complex Fermi Surfaces","authors":"A. Ya. Maltsev","doi":"10.1134/S1063776123110079","DOIUrl":null,"url":null,"abstract":"<p>We consider the Lifshitz topological transitions and the corresponding changes in the galvano-magnetic properties of a metal from the point of view of the general classification of open electron trajectories arising on Fermi surfaces of arbitrary complexity in the presence of magnetic field. The construction of such a classification is the content of the Novikov problem and is based on the division of non-closed electron trajectories into topologically regular and chaotic trajectories. The description of stable topologically regular trajectories gives a basis for a complete classification of non-closed trajectories on arbitrary Fermi surfaces and is connected with special topological structures on these surfaces. Using this description, we describe here the distinctive features of possible changes in the picture of electron trajectories during the Lifshitz transitions, as well as changes in the conductivity behavior in the presence of a strong magnetic field. As it turns out, the use of such an approach makes it possible to describe not only the changes associated with stable electron trajectories, but also the most general changes of the conductivity diagram in strong magnetic fields.</p>","PeriodicalId":629,"journal":{"name":"Journal of Experimental and Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental and Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063776123110079","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the Lifshitz topological transitions and the corresponding changes in the galvano-magnetic properties of a metal from the point of view of the general classification of open electron trajectories arising on Fermi surfaces of arbitrary complexity in the presence of magnetic field. The construction of such a classification is the content of the Novikov problem and is based on the division of non-closed electron trajectories into topologically regular and chaotic trajectories. The description of stable topologically regular trajectories gives a basis for a complete classification of non-closed trajectories on arbitrary Fermi surfaces and is connected with special topological structures on these surfaces. Using this description, we describe here the distinctive features of possible changes in the picture of electron trajectories during the Lifshitz transitions, as well as changes in the conductivity behavior in the presence of a strong magnetic field. As it turns out, the use of such an approach makes it possible to describe not only the changes associated with stable electron trajectories, but also the most general changes of the conductivity diagram in strong magnetic fields.
期刊介绍:
Journal of Experimental and Theoretical Physics is one of the most influential physics research journals. Originally based on Russia, this international journal now welcomes manuscripts from all countries in the English or Russian language. It publishes original papers on fundamental theoretical and experimental research in all fields of physics: from solids and liquids to elementary particles and astrophysics.