Affine isoperimetric inequalities on flag manifolds

Susanna Dann, Grigoris Paouris, Peter Pivovarov
{"title":"Affine isoperimetric inequalities on flag manifolds","authors":"Susanna Dann, Grigoris Paouris, Peter Pivovarov","doi":"10.4153/s0008414x23000871","DOIUrl":null,"url":null,"abstract":"<p>Building on work of Furstenberg and Tzkoni, we introduce <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240111032518588-0908:S0008414X23000871:S0008414X23000871_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {r}$</span></span></img></span></span>-flag affine quermassintegrals and their dual versions. These quantities generalize affine and dual affine quermassintegrals as averages on flag manifolds (where the Grassmannian can be considered as a special case). We establish affine and linear invariance properties and extend fundamental results to this new setting. In particular, we prove several affine isoperimetric inequalities from convex geometry and their approximate reverse forms. We also introduce functional forms of these quantities and establish corresponding inequalities.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building on work of Furstenberg and Tzkoni, we introduce Abstract Image$\mathbf {r}$-flag affine quermassintegrals and their dual versions. These quantities generalize affine and dual affine quermassintegrals as averages on flag manifolds (where the Grassmannian can be considered as a special case). We establish affine and linear invariance properties and extend fundamental results to this new setting. In particular, we prove several affine isoperimetric inequalities from convex geometry and their approximate reverse forms. We also introduce functional forms of these quantities and establish corresponding inequalities.

旗流形上的仿射等周不等式
在弗斯滕伯格和茨科尼的研究基础上,我们引入了$\mathbf {r}$ 旗仿射求质积分及其对偶版本。这些量将仿射和对偶仿射质点积分概括为旗流形(格拉斯曼流形可视为一种特例)上的平均量。我们建立了仿射和线性不变性质,并将基本结果扩展到这一新的环境中。特别是,我们证明了凸几何中的几个仿射等周不等式及其近似反向形式。我们还引入了这些量的函数形式,并建立了相应的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信