A Higher-Order Non-autonomous Semilinear Parabolic Equation

Maykel Belluzi, Flank D. M. Bezerra, Marcelo J. D. Nascimento, Lucas A. Santos
{"title":"A Higher-Order Non-autonomous Semilinear Parabolic Equation","authors":"Maykel Belluzi, Flank D. M. Bezerra, Marcelo J. D. Nascimento, Lucas A. Santos","doi":"10.1007/s00574-023-00381-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study results of well-posedness and regularity of higher order in time abstract non-autonomous semilinear Cauchy problems associated with Newton’s binomial theorem and the theory of sectorial operators. Our approach to parabolic problems of arbitrarily order <i>n</i> apparently has never been addressed earlier in the existing literature. Also, we present applications to evolutionary equations involving the fractional Laplacian in bounded smooth domains of <span>\\({\\mathbb {R}}^N\\)</span>.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-023-00381-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study results of well-posedness and regularity of higher order in time abstract non-autonomous semilinear Cauchy problems associated with Newton’s binomial theorem and the theory of sectorial operators. Our approach to parabolic problems of arbitrarily order n apparently has never been addressed earlier in the existing literature. Also, we present applications to evolutionary equations involving the fractional Laplacian in bounded smooth domains of \({\mathbb {R}}^N\).

高阶非自治半线性抛物方程
在本文中,我们研究了与牛顿二项式定理和扇形算子理论相关的时间抽象非自治半线性 Cauchy 问题的好求结果和高阶正则性。我们对任意阶数为 n 的抛物线问题的研究方法显然是现有文献中从未涉及过的。此外,我们还介绍了在\({\mathbb {R}}^N\) 的有界光滑域中涉及分数拉普拉奇的演化方程的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信