Designing Heterogeneous LLM Agents for Financial Sentiment Analysis

Frank Xing
{"title":"Designing Heterogeneous LLM Agents for Financial Sentiment Analysis","authors":"Frank Xing","doi":"arxiv-2401.05799","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have drastically changed the possible ways to\ndesign intelligent systems, shifting the focuses from massive data acquisition\nand new modeling training to human alignment and strategical elicitation of the\nfull potential of existing pre-trained models. This paradigm shift, however, is\nnot fully realized in financial sentiment analysis (FSA), due to the\ndiscriminative nature of this task and a lack of prescriptive knowledge of how\nto leverage generative models in such a context. This study investigates the\neffectiveness of the new paradigm, i.e., using LLMs without fine-tuning for\nFSA. Rooted in Minsky's theory of mind and emotions, a design framework with\nheterogeneous LLM agents is proposed. The framework instantiates specialized\nagents using prior domain knowledge of the types of FSA errors and reasons on\nthe aggregated agent discussions. Comprehensive evaluation on FSA datasets show\nthat the framework yields better accuracies, especially when the discussions\nare substantial. This study contributes to the design foundations and paves new\navenues for LLMs-based FSA. Implications on business and management are also\ndiscussed.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.05799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have drastically changed the possible ways to design intelligent systems, shifting the focuses from massive data acquisition and new modeling training to human alignment and strategical elicitation of the full potential of existing pre-trained models. This paradigm shift, however, is not fully realized in financial sentiment analysis (FSA), due to the discriminative nature of this task and a lack of prescriptive knowledge of how to leverage generative models in such a context. This study investigates the effectiveness of the new paradigm, i.e., using LLMs without fine-tuning for FSA. Rooted in Minsky's theory of mind and emotions, a design framework with heterogeneous LLM agents is proposed. The framework instantiates specialized agents using prior domain knowledge of the types of FSA errors and reasons on the aggregated agent discussions. Comprehensive evaluation on FSA datasets show that the framework yields better accuracies, especially when the discussions are substantial. This study contributes to the design foundations and paves new avenues for LLMs-based FSA. Implications on business and management are also discussed.
为金融情感分析设计异构 LLM 代理
大型语言模型(LLMs)极大地改变了设计智能系统的可能方式,将重点从海量数据采集和新模型训练转移到了人工调整和从战略角度激发现有预训练模型的全部潜力。然而,由于金融情感分析(FSA)任务的歧视性,以及缺乏在这种情况下如何利用生成模型的规范性知识,这种范式转变并没有在金融情感分析中得到充分实现。本研究探讨了新范式的有效性,即在金融情感分析中使用 LLMs 而不进行微调。本研究以明斯基的心智和情感理论为基础,提出了一个具有异构 LLM 代理的设计框架。该框架利用有关 FSA 错误类型的先验领域知识和聚合代理讨论的原因,将专门代理实例化。在 FSA 数据集上进行的综合评估表明,该框架能产生更高的准确度,尤其是在讨论量很大的情况下。这项研究为基于 LLMs 的 FSA 奠定了设计基础,开辟了新的途径。此外,还讨论了对商业和管理的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信