US efficient factors in a Bayesian model scan framework

IF 1.9 Q2 ECONOMICS
Michael O'Connell
{"title":"US efficient factors in a Bayesian model scan framework","authors":"Michael O'Connell","doi":"10.1108/jes-07-2023-0379","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The author examines the impact these efficient factors have on factor model comparison tests in US returns using the Bayesian model scan approach of Chib <em>et al</em>. (2020), and Chib <em>et al</em>.(2022).</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Ehsani and Linnainmaa (2022) show that time-series efficient investment factors in US stock returns span and earn 40% higher Sharpe ratios than the original factors.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The author shows that the optimal asset pricing model is an eight-factor model which contains efficient versions of the market factor, value factor (HML) and long-horizon behavioral factor (FIN). The findings show that efficient factors enhance the performance of US factor model performance. The top performing asset pricing model does not change in recent data.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The author is the only one to examine if the efficient factors developed by Ehsani and Linnainmaa (2022) have an impact on model comparison tests in US stock returns.</p><!--/ Abstract__block -->","PeriodicalId":47604,"journal":{"name":"JOURNAL OF ECONOMIC STUDIES","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF ECONOMIC STUDIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jes-07-2023-0379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The author examines the impact these efficient factors have on factor model comparison tests in US returns using the Bayesian model scan approach of Chib et al. (2020), and Chib et al.(2022).

Design/methodology/approach

Ehsani and Linnainmaa (2022) show that time-series efficient investment factors in US stock returns span and earn 40% higher Sharpe ratios than the original factors.

Findings

The author shows that the optimal asset pricing model is an eight-factor model which contains efficient versions of the market factor, value factor (HML) and long-horizon behavioral factor (FIN). The findings show that efficient factors enhance the performance of US factor model performance. The top performing asset pricing model does not change in recent data.

Originality/value

The author is the only one to examine if the efficient factors developed by Ehsani and Linnainmaa (2022) have an impact on model comparison tests in US stock returns.

贝叶斯模型扫描框架中的美国有效因素
目的作者利用 Chib 等人(2020 年)和 Chib 等人(2022 年)的贝叶斯模型扫描方法,研究了这些有效因子对美股回报中的因子模型比较测试的影响。设计/方法/途径Ehsani 和 Linnainmaa(2022 年)的研究表明,美股回报中的时间序列有效投资因子的跨度和夏普比率比原始因子高 40%。研究结果作者指出,最优资产定价模型是一个八因子模型,其中包含市场因子、价值因子(HML)和长视距行为因子(FIN)的有效版本。研究结果表明,有效因子提高了美国因子模型的性能。原创性/价值作者是唯一一位研究 Ehsani 和 Linnainmaa(2022 年)开发的有效因子是否对美股收益的模型比较测试有影响的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
59
期刊介绍: The Journal of Economic Studies publishes high quality research findings and commentary on international developments in economics. The journal maintains a sound balance between economic theory and application at both the micro and the macro levels. Articles on economic issues between individual nations, emerging and evolving trading blocs are particularly welcomed. Contributors are encouraged to spell out the practical implications of their work for economists in government and industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信