Integrability and non-invertible symmetries of projector spin chains

Pramod Padmanabhan, Kun Hao, Vladimir Korepin
{"title":"Integrability and non-invertible symmetries of projector spin chains","authors":"Pramod Padmanabhan, Kun Hao, Vladimir Korepin","doi":"arxiv-2401.05662","DOIUrl":null,"url":null,"abstract":"We show that nearest-neighbor spin chains composed of projectors to 2-qudit\nproduct states are integrable. The $R$-matrices (with a multidimensional\nspectral parameter) include additive as well as non-additive parameters. They\nsatisfy the colored Yang-Baxter equation. The local terms of the resulting\nHamiltonians exhaust projectors with all possible ranks for a 2-qudit space.\nThe Hamiltonian can be Hermitian or not, with or without frustration. The\nground state structures of the frustration-free qubit spin chains are analysed.\nThese systems have either global or local non-invertible symmetries. In\nparticular, the rank 1 case has two product ground states that break global\nnon-invertible symmetries (analogous to the case of the two ferromagnetic\nstates breaking the global $\\mathbb{Z}_2$ symmetry of the $XXX$ spin chain).\nThe Bravyi-Gosset conditions for spectral gaps show that these systems are\ngapped. The associated Yang-Baxter algebra and the spectrum of the transfer\nmatrix are also studied.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.05662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that nearest-neighbor spin chains composed of projectors to 2-qudit product states are integrable. The $R$-matrices (with a multidimensional spectral parameter) include additive as well as non-additive parameters. They satisfy the colored Yang-Baxter equation. The local terms of the resulting Hamiltonians exhaust projectors with all possible ranks for a 2-qudit space. The Hamiltonian can be Hermitian or not, with or without frustration. The ground state structures of the frustration-free qubit spin chains are analysed. These systems have either global or local non-invertible symmetries. In particular, the rank 1 case has two product ground states that break global non-invertible symmetries (analogous to the case of the two ferromagnetic states breaking the global $\mathbb{Z}_2$ symmetry of the $XXX$ spin chain). The Bravyi-Gosset conditions for spectral gaps show that these systems are gapped. The associated Yang-Baxter algebra and the spectrum of the transfer matrix are also studied.
投影自旋链的积分性和不可逆转对称性
我们证明,由投影到 2-位积态组成的近邻自旋链是可积分的。R$矩阵(具有多维谱参数)包括可加参数和不可加参数。它们满足彩色杨-巴克斯特方程。由此得到的哈密尔顿的局部项会穷举出具有 2-qudit 空间所有可能等级的投影。我们分析了无沮度四比特自旋链的基态结构。特别是秩 1 的情况下,有两个乘积基态打破了全局非不可逆对称性(类似于两个铁磁态打破了 $XXX$ 自旋链的全局 $\mathbb{Z}_2$ 对称性的情况)。我们还研究了相关的杨-巴克斯特代数和转移矩阵谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信